
Richard Burnison home articles notes whoami contact

2019-06-18 12:32 UTC

Fun MySQL fact of the day: everything is two-phase

Yesterday, we started thinking about InnoDB's redo log, and I left you with a thought toredo log
consider: how can MySQL keep multiple storage engines' redo logs in sync with the binary log.redo log
Today, we'll consider how MySQL does it.

You may have heard the term, "two-phase commit" (or 2PC) before, but if not, it is an
algorithm used to coordinate multiple systems participating in a distributed, or global,
transaction. The most common standard for two-phase commits is the X/Open XA
specification , often just called "XA" (for eXtended Architecture). Today, we will consider the
XA standard only at the highest level, but if you're the kind of person that likes to maximise
fun, you can read the full technical standard . If you have heard the term "two-phase
commit" before, you probably heard it used with distaste. Maybe something along the lines of
"two-phase commit is [bad]" or "two-phase commit doesn't scale". And, hey, while I'm not
going to argue too strongly about that, you may be surprised to learn that MySQL uses XA
internally for all transactions to ensure that all storage engines participating in a transaction
maintain the properties of ACID. Let's see how.

When MySQL gets a request to COMMIT , it acts as a coordinator for the transaction (a
"transaction coordinator"). The first step is to call MYSQL_BIN_LOG::prepare , which tells
each storage engine to commit resources to the transaction and ensure that the transaction
will succeed. In InnoDB, this call is eventually resolved to innobase_xa_prepare wherein
InnoDB ensures that the transaction is fully recorded in the redo log and syncs the redo logredo log redo log
file to disk (as necessary). At this point, InnoDB considers the transaction "prepared", but not
yet committed. Should MySQL crash now, InnoDB would roll-back the in-flight transaction on
recovery.

Then, once MySQL has received acknowledgement from all storage engines involved in the
transaction (i.e. they've all returned a "yes" vote), MYSQL_BIN_LOG::commit will be called
and the transaction will be recorded to the binary log. Next, the storage engines will be
instructed to commit their changes. In InnoDB, this call is eventually resolved to
innobase_commit wherein InnoDB lazily logs that the previously-prepared transaction is
now "committed". At this point, the transaction is effectively committed and present in both
the binary log and the InnoDB redo log.redo log

So, you may be wondering: what happens if MySQL crashes after writing its own binary log
events but before calling innobase_commit ? Well, in this case, when MySQL starts back up,
in checks whether or not its binary log was safely closed. In this case, it wouldn't have been, so
MySQL will collect a list of XA transaction ids (Xid s) from the binary log and tell each storage
engine to commit them---if they exist and have not yet been committed. Remember, this is
safe because, by this time, all storage engines have already recorded the transaction before
voting "yes" during the prepare phase.

So, next time somebody tells you, in absolute terms, that XA is "bad" or "doesn't scale", you
can share this fun fact with them and see how they change their mind.

acid, binlog, databases, innodb, mysql

https://www.burnison.ca/
https://www.burnison.ca/
https://www.burnison.ca/articles
https://www.burnison.ca/notes
https://www.burnison.ca/about
https://www.burnison.ca/contact
https://www.burnison.ca/notes/fun-mysql-fact-of-the-day-redo-logs
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/X/Open_XA
https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://www.burnison.ca/search?q=ACID+%22fun+fact%22+%22stands+for%22
https://github.com/mysql/mysql-server/blob/124c7ab1d6f914637521fd4463a993aa73403513/sql/binlog.cc#L7785
https://github.com/mysql/mysql-server/blob/124c7ab1d6f914637521fd4463a993aa73403513/storage/innobase/handler/ha_innodb.cc#L18820
https://github.com/mysql/mysql-server/blob/124c7ab1d6f914637521fd4463a993aa73403513/sql/binlog.cc#L7838
https://github.com/mysql/mysql-server/blob/124c7ab1d6f914637521fd4463a993aa73403513/storage/innobase/handler/ha_innodb.cc#L5259
https://www.burnison.ca/tags/acid
https://www.burnison.ca/tags/binlog
https://www.burnison.ca/tags/databases
https://www.burnison.ca/tags/innodb
https://www.burnison.ca/tags/mysql

