
Go Concurrency PatternsGo Concurrency Patterns
Rob PikeRob Pike
GoogleGoogle

VideoVideo

This talk was presented at Google I/O in June 2012.This talk was presented at Google I/O in June 2012.

Watch the talk on YouTubeWatch the talk on YouTube (http://www.youtube.com/watch?v=f6kdp27TYZs) (http://www.youtube.com/watch?v=f6kdp27TYZs) 22

http://www.youtube.com/watch?v=f6kdp27TYZs

IntroductionIntroduction

33

Concurrency features in GoConcurrency features in Go

People seemed fascinated by the concurrency features of Go when the language was firstPeople seemed fascinated by the concurrency features of Go when the language was first
announced.announced.

Questions:Questions:

Why is concurrency supported?Why is concurrency supported?

What is concurrency, anyway?What is concurrency, anyway?

Where does the idea come from?Where does the idea come from?

What is it good for?What is it good for?

How do I use it?How do I use it? 44

Why?Why?

Look around you. What do you see?Look around you. What do you see?

Do you see a single-stepping world doing one thing at a time?Do you see a single-stepping world doing one thing at a time?

Or do you see a complex world of interacting, independently behaving pieces?Or do you see a complex world of interacting, independently behaving pieces?

That's why. Sequential processing on its own does not model the world's behavior.That's why. Sequential processing on its own does not model the world's behavior. 55

What is concurrency?What is concurrency?

Concurrency is the composition of independently executing computations.Concurrency is the composition of independently executing computations.

Concurrency is a way to structure software, particularly as a way to write clean code thatConcurrency is a way to structure software, particularly as a way to write clean code that
interacts well with the real world.interacts well with the real world.

It is not parallelism.It is not parallelism. 66

Concurrency is not parallelismConcurrency is not parallelism

Concurrency is not parallelism, although it enables parallelism.Concurrency is not parallelism, although it enables parallelism.

If you have only one processor, your program can still be concurrent If you have only one processor, your program can still be concurrent but it cannot bebut it cannot be
parallel.parallel.

On the other hand, a well-written concurrent program might run efficiently in parallel on aOn the other hand, a well-written concurrent program might run efficiently in parallel on a
multiprocessor. That property could be important...multiprocessor. That property could be important...

For more on that distinction, see the link below. Too much to discuss here.For more on that distinction, see the link below. Too much to discuss here.

golang.org/s/concurrency-is-not-parallelismgolang.org/s/concurrency-is-not-parallelism (http://golang.org/s/concurrency-is-not-parallelism) (http://golang.org/s/concurrency-is-not-parallelism) 77

http://golang.org/s/concurrency-is-not-parallelism

A model for software constructionA model for software construction

Easy to understand.Easy to understand.

Easy to use.Easy to use.

Easy to reason about.Easy to reason about.

You don't need to be an expert!You don't need to be an expert!

(Much nicer than dealing with the minutiae of parallelism (threads, semaphores, locks,(Much nicer than dealing with the minutiae of parallelism (threads, semaphores, locks,
barriers, etc.))barriers, etc.)) 88

HistoryHistory

To many, the concurrency features of Go seemed new.To many, the concurrency features of Go seemed new.

But they are rooted in a long history, reaching back to Hoare's CSP in 1978 and evenBut they are rooted in a long history, reaching back to Hoare's CSP in 1978 and even
Dijkstra's guarded commands (1975).Dijkstra's guarded commands (1975).

Languages with similar features:Languages with similar features:

Occam (May, 1983)Occam (May, 1983)

Erlang (Armstrong, 1986)Erlang (Armstrong, 1986)

Newsqueak (Pike, 1988)Newsqueak (Pike, 1988)

Concurrent ML (Reppy, 1993)Concurrent ML (Reppy, 1993)

Alef (Winterbottom, 1995)Alef (Winterbottom, 1995)

Limbo (Dorward, Pike, Winterbottom, 1996).Limbo (Dorward, Pike, Winterbottom, 1996). 99

DistinctionDistinction

Go is the latest on the Newsqueak-Alef-Limbo branch, distinguished by first-class channels.Go is the latest on the Newsqueak-Alef-Limbo branch, distinguished by first-class channels.

Erlang is closer to the original CSP, where you communicate to a process by name ratherErlang is closer to the original CSP, where you communicate to a process by name rather
than over a channel.than over a channel.

The models are equivalent but express things differently.The models are equivalent but express things differently.

Rough analogy: writing to a file by name (process, Erlang) vs. writing to a file descriptorRough analogy: writing to a file by name (process, Erlang) vs. writing to a file descriptor
(channel, Go).(channel, Go). 1010

Basic ExamplesBasic Examples

1111

A boring functionA boring function

We need an example to show the interesting properties of the concurrency primitives.We need an example to show the interesting properties of the concurrency primitives.

To avoid distraction, we make it a boring example.To avoid distraction, we make it a boring example.

func boring(msg string) {func boring(msg string) {
 for i := 0; ; i++ { for i := 0; ; i++ {
 fmt.Println(msg, i) fmt.Println(msg, i)
 time.Sleep(time.Second) time.Sleep(time.Second)
 } }
}} Run

1212

Slightly less boringSlightly less boring

Make the intervals between messages unpredictable (still under a second).Make the intervals between messages unpredictable (still under a second).

func boring(msg string) {func boring(msg string) {
 for i := 0; ; i++ { for i := 0; ; i++ {
 fmt.Println(msg, i) fmt.Println(msg, i)
 time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond) time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
 } }
}} Run

1313

Running itRunning it

The boring function runs on forever, like a boring party guest.The boring function runs on forever, like a boring party guest.

func main() {func main() {
 boring("boring!")boring("boring!")
}}

func boring(msg string) {func boring(msg string) {
 for i := 0; ; i++ { for i := 0; ; i++ {
 fmt.Println(msg, i) fmt.Println(msg, i)
 time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond) time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
 } }
}} Run

1414

Ignoring itIgnoring it

The go statement runs the function as usual, but doesn't make the caller wait.The go statement runs the function as usual, but doesn't make the caller wait.

It launches a goroutine.It launches a goroutine.

The functionality is analogous to the & on the end of a shell command.The functionality is analogous to the & on the end of a shell command.

package mainpackage main

import (import (
 "fmt" "fmt"
 "math/rand" "math/rand"
 "time" "time"
))

func main() {func main() {
 go boring("boring!")go boring("boring!")
}} Run

1515

Ignoring it a little lessIgnoring it a little less

When main returns, the program exits and takes the boring function down with it.When main returns, the program exits and takes the boring function down with it.

We can hang around a little, and on the way show that both main and the launchedWe can hang around a little, and on the way show that both main and the launched
goroutine are running.goroutine are running.

func main() {func main() {
 go boring("boring!") go boring("boring!")
 fmt.Println("I'm listening.") fmt.Println("I'm listening.")
 time.Sleep(2 * time.Second) time.Sleep(2 * time.Second)
 fmt.Println("You're boring; I'm leaving.") fmt.Println("You're boring; I'm leaving.")
}} Run

1616

GoroutinesGoroutines

What is a goroutine? It's an independently executing function, launched by a go statement.What is a goroutine? It's an independently executing function, launched by a go statement.

It has its own call stack, which grows and shrinks as required.It has its own call stack, which grows and shrinks as required.

It's very cheap. It's practical to have thousands, even hundreds of thousands of goroutines.It's very cheap. It's practical to have thousands, even hundreds of thousands of goroutines.

It's not a thread.It's not a thread.

There might be only one thread in a program with thousands of goroutines.There might be only one thread in a program with thousands of goroutines.

Instead, goroutines are multiplexed dynamically onto threads as needed to keep all theInstead, goroutines are multiplexed dynamically onto threads as needed to keep all the
goroutines running.goroutines running.

But if you think of it as a very cheap thread, you won't be far off.But if you think of it as a very cheap thread, you won't be far off. 1717

CommunicationCommunication

Our boring examples cheated: the main function couldn't see the output from the otherOur boring examples cheated: the main function couldn't see the output from the other
goroutine.goroutine.

It was just printed to the screen, where we pretended we saw a conversation.It was just printed to the screen, where we pretended we saw a conversation.

Real conversations require communication.Real conversations require communication. 1818

ChannelsChannels

A channel in Go provides a connection between two goroutines, allowing them toA channel in Go provides a connection between two goroutines, allowing them to
communicate.communicate.

 // Declaring and initializing. // Declaring and initializing.
 var c chan int var c chan int
 c = make(chan int) c = make(chan int)
 // or // or
 c := make(chan int)c := make(chan int)

 // Sending on a channel. // Sending on a channel.
 c <- 1c <- 1

 // Receiving from a channel. // Receiving from a channel.
 // The "arrow" indicates the direction of data flow. // The "arrow" indicates the direction of data flow.
 value = <-cvalue = <-c

1919

Using channelsUsing channels

A channel connects the main and boring goroutines so they can communicate.A channel connects the main and boring goroutines so they can communicate.

func boring(msg string, c chan string) {func boring(msg string, c chan string) {
 for i := 0; ; i++ { for i := 0; ; i++ {
 c <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent can be any suitable value.c <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent can be any suitable value.
 time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond) time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
 } }
}}

func main() {func main() {
 c := make(chan string) c := make(chan string)
 go boring("boring!", c) go boring("boring!", c)
 for i := 0; i < 5; i++ { for i := 0; i < 5; i++ {
 fmt.Printf("You say: %q\n", <-c) // Receive expression is just a value.fmt.Printf("You say: %q\n", <-c) // Receive expression is just a value.
 } }
 fmt.Println("You're boring; I'm leaving.") fmt.Println("You're boring; I'm leaving.")
}} Run

2020

SynchronizationSynchronization

When the main function executes <–c, it will wait for a value to be sent.When the main function executes <–c, it will wait for a value to be sent.

Similarly, when the boring function executes c <– value, it waits for a receiver to be ready.Similarly, when the boring function executes c <– value, it waits for a receiver to be ready.

A sender and receiver must both be ready to play their part in the communication.A sender and receiver must both be ready to play their part in the communication.
Otherwise we wait until they are.Otherwise we wait until they are.

Thus channels both communicate and synchronize.Thus channels both communicate and synchronize. 2121

An aside about buffered channelsAn aside about buffered channels

Note for experts: Go channels can also be created with a buffer.Note for experts: Go channels can also be created with a buffer.

Buffering removes synchronization.Buffering removes synchronization.

Buffering makes them more like Erlang's mailboxes.Buffering makes them more like Erlang's mailboxes.

Buffered channels can be important for some problems but they are more subtle to reasonBuffered channels can be important for some problems but they are more subtle to reason
about.about.

We won't need them today.We won't need them today. 2222

The Go approachThe Go approach

Don't communicate by sharing memory, share memory by communicating.Don't communicate by sharing memory, share memory by communicating. 2323

"Patterns""Patterns"

2424

Generator: function that returns a channelGenerator: function that returns a channel

Channels are first-class values, just like strings or integers.Channels are first-class values, just like strings or integers.

func boring(msg string) <-chan string { // Returns receive-only channel of strings.func boring(msg string) <-chan string { // Returns receive-only channel of strings.
 c := make(chan string) c := make(chan string)
 go func() { // We launch the goroutine from inside the function.go func() { // We launch the goroutine from inside the function.
 for i := 0; ; i++ { for i := 0; ; i++ {
 c <- fmt.Sprintf("%s %d", msg, i) c <- fmt.Sprintf("%s %d", msg, i)
 time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond) time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
 } }
 }() }()
 return c // Return the channel to the caller.return c // Return the channel to the caller.
}}

 c := boring("boring!") // Function returning a channel.c := boring("boring!") // Function returning a channel.
 for i := 0; i < 5; i++ { for i := 0; i < 5; i++ {
 fmt.Printf("You say: %q\n", <-c) fmt.Printf("You say: %q\n", <-c)
 } }
 fmt.Println("You're boring; I'm leaving.") fmt.Println("You're boring; I'm leaving.") Run

2525

Channels as a handle on a serviceChannels as a handle on a service

Our boring function returns a channel that lets us communicate with the boring service itOur boring function returns a channel that lets us communicate with the boring service it
provides.provides.

We can have more instances of the service.We can have more instances of the service.

func main() {func main() {
 joe := boring("Joe")joe := boring("Joe")
 ann := boring("Ann")ann := boring("Ann")
 for i := 0; i < 5; i++ { for i := 0; i < 5; i++ {
 fmt.Println(<-joe) fmt.Println(<-joe)
 fmt.Println(<-ann) fmt.Println(<-ann)
 } }
 fmt.Println("You're both boring; I'm leaving.") fmt.Println("You're both boring; I'm leaving.")
}} Run

2626

MultiplexingMultiplexing

These programs make Joe and Ann count in lockstep. These programs make Joe and Ann count in lockstep.
We can instead use a fan-in function to let whosoever is ready talk.We can instead use a fan-in function to let whosoever is ready talk.

func fanIn(input1, input2 <-chan string) <-chan string {func fanIn(input1, input2 <-chan string) <-chan string {
 c := make(chan string) c := make(chan string)
 go func() { for { c <- <-input1 } }()go func() { for { c <- <-input1 } }()
 go func() { for { c <- <-input2 } }()go func() { for { c <- <-input2 } }()
 return c return c
}}

func main() {func main() {
 c := fanIn(boring("Joe"), boring("Ann"))c := fanIn(boring("Joe"), boring("Ann"))
 for i := 0; i < 10; i++ { for i := 0; i < 10; i++ {
 fmt.Println(<-c)fmt.Println(<-c)
 } }
 fmt.Println("You're both boring; I'm leaving.") fmt.Println("You're both boring; I'm leaving.")
}} Run

2727

Fan-inFan-in

2828

Restoring sequencingRestoring sequencing

Send a channel on a channel, making goroutine wait its turn.Send a channel on a channel, making goroutine wait its turn.

Receive all messages, then enable them again by sending on a private channel.Receive all messages, then enable them again by sending on a private channel.

First we define a message type that contains a channel for the reply.First we define a message type that contains a channel for the reply.

type Message struct {type Message struct {
 str string str string
 wait chan boolwait chan bool
}}

2929

Restoring sequencing.Restoring sequencing.

Each speaker must wait for a go-ahead.Each speaker must wait for a go-ahead.

 for i := 0; i < 5; i++ { for i := 0; i < 5; i++ {
 msg1 := <-c; fmt.Println(msg1.str) msg1 := <-c; fmt.Println(msg1.str)
 msg2 := <-c; fmt.Println(msg2.str) msg2 := <-c; fmt.Println(msg2.str)
 msg1.wait <- true msg1.wait <- true
 msg2.wait <- true msg2.wait <- true
 } }

 waitForIt := make(chan bool) // Shared between all messages. waitForIt := make(chan bool) // Shared between all messages.

 c <- Message{ fmt.Sprintf("%s: %d", msg, i), waitForIt } c <- Message{ fmt.Sprintf("%s: %d", msg, i), waitForIt }
 time.Sleep(time.Duration(rand.Intn(2e3)) * time.Millisecond) time.Sleep(time.Duration(rand.Intn(2e3)) * time.Millisecond)
 <-waitForIt <-waitForIt Run

3030

SelectSelect

A control structure unique to concurrency.A control structure unique to concurrency.

The reason channels and goroutines are built into the language.The reason channels and goroutines are built into the language. 3131

SelectSelect

The select statement provides another way to handle multiple channels. The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication: It's like a switch, but each case is a communication:
- All channels are evaluated. - All channels are evaluated.
- Selection blocks until one communication can proceed, which then does. - Selection blocks until one communication can proceed, which then does.
- If multiple can proceed, select chooses pseudo-randomly. - If multiple can proceed, select chooses pseudo-randomly.
- A default clause, if present, executes immediately if no channel is ready.- A default clause, if present, executes immediately if no channel is ready.

 select { select {
 case v1 := <-c1: case v1 := <-c1:
 fmt.Printf("received %v from c1\n", v1) fmt.Printf("received %v from c1\n", v1)
 case v2 := <-c2: case v2 := <-c2:
 fmt.Printf("received %v from c2\n", v1) fmt.Printf("received %v from c2\n", v1)
 case c3 <- 23: case c3 <- 23:
 fmt.Printf("sent %v to c3\n", 23) fmt.Printf("sent %v to c3\n", 23)
 default: default:
 fmt.Printf("no one was ready to communicate\n") fmt.Printf("no one was ready to communicate\n")
 } }

3232

Fan-in againFan-in again

Rewrite our original fanIn function. Only one goroutine is needed. Old:Rewrite our original fanIn function. Only one goroutine is needed. Old:

func fanIn(input1, input2 <-chan string) <-chan string {func fanIn(input1, input2 <-chan string) <-chan string {
 c := make(chan string) c := make(chan string)
 go func() { for { c <- <-input1 } }()go func() { for { c <- <-input1 } }()
 go func() { for { c <- <-input2 } }()go func() { for { c <- <-input2 } }()
 return c return c
}}

3333

Fan-in using selectFan-in using select

Rewrite our original fanIn function. Only one goroutine is needed. New:Rewrite our original fanIn function. Only one goroutine is needed. New:

func fanIn(input1, input2 <-chan string) <-chan string {func fanIn(input1, input2 <-chan string) <-chan string {
 c := make(chan string) c := make(chan string)
 go func() {go func() {
 for { for {
 select {select {
 case s := <-input1: c <- scase s := <-input1: c <- s
 case s := <-input2: c <- scase s := <-input2: c <- s
 }}
 } }
 }() }()
 return c return c
}} Run

3434

Timeout using selectTimeout using select

The time.After function returns a channel that blocks for the specified duration. The time.After function returns a channel that blocks for the specified duration.
After the interval, the channel delivers the current time, once.After the interval, the channel delivers the current time, once.

func main() {func main() {
 c := boring("Joe") c := boring("Joe")
 for { for {
 select { select {
 case s := <-c: case s := <-c:
 fmt.Println(s) fmt.Println(s)
 case <-time.After(1 * time.Second):case <-time.After(1 * time.Second):
 fmt.Println("You're too slow.") fmt.Println("You're too slow.")
 return return
 } }
 } }
}} Run

3535

Timeout for whole conversation using selectTimeout for whole conversation using select

Create the timer once, outside the loop, to time out the entire conversation. Create the timer once, outside the loop, to time out the entire conversation.
(In the previous program, we had a timeout for each message.)(In the previous program, we had a timeout for each message.)

func main() {func main() {
 c := boring("Joe") c := boring("Joe")
 timeout := time.After(5 * time.Second)timeout := time.After(5 * time.Second)
 for { for {
 select { select {
 case s := <-c: case s := <-c:
 fmt.Println(s) fmt.Println(s)
 case <-timeout:case <-timeout:
 fmt.Println("You talk too much.") fmt.Println("You talk too much.")
 return return
 } }
 } }
}} Run

3636

Quit channelQuit channel

We can turn this around and tell Joe to stop when we're tired of listening to him.We can turn this around and tell Joe to stop when we're tired of listening to him.

 quit := make(chan bool)quit := make(chan bool)
 c := boring("Joe", quit) c := boring("Joe", quit)
 for i := rand.Intn(10); i >= 0; i-- { fmt.Println(<-c) } for i := rand.Intn(10); i >= 0; i-- { fmt.Println(<-c) }
 quit <- truequit <- true

 select { select {
 case c <- fmt.Sprintf("%s: %d", msg, i): case c <- fmt.Sprintf("%s: %d", msg, i):
 // do nothing // do nothing
 case <-quit:case <-quit:
 return return
 } } Run

3737

Receive on quit channelReceive on quit channel

How do we know it's finished? Wait for it to tell us it's done: receive on the quit channelHow do we know it's finished? Wait for it to tell us it's done: receive on the quit channel

 quit := make(chan string)quit := make(chan string)
 c := boring("Joe", quit)c := boring("Joe", quit)
 for i := rand.Intn(10); i >= 0; i-- { fmt.Println(<-c) } for i := rand.Intn(10); i >= 0; i-- { fmt.Println(<-c) }
 quit <- "Bye!"quit <- "Bye!"
 fmt.Printf("Joe says: %q\n", <-quit)fmt.Printf("Joe says: %q\n", <-quit)

 select { select {
 case c <- fmt.Sprintf("%s: %d", msg, i): case c <- fmt.Sprintf("%s: %d", msg, i):
 // do nothing // do nothing
 case <-quit:case <-quit:
 cleanup() cleanup()
 quit <- "See you!"quit <- "See you!"
 return return
 } } Run

3838

Daisy-chainDaisy-chain

func f(left, right chan int) {func f(left, right chan int) {
 left <- 1 + <-right left <- 1 + <-right
}}

func main() {func main() {
 const n = 10000 const n = 10000
 leftmost := make(chan int) leftmost := make(chan int)
 right := leftmost right := leftmost
 left := leftmost left := leftmost
 for i := 0; i < n; i++ { for i := 0; i < n; i++ {
 right = make(chan int) right = make(chan int)
 go f(left, right) go f(left, right)
 left = right left = right
 } }
 go func(c chan int) { c <- 1 }(right) go func(c chan int) { c <- 1 }(right)
 fmt.Println(<-leftmost) fmt.Println(<-leftmost)
}} Run

3939

Chinese whispers, gopher styleChinese whispers, gopher style

4040

Systems softwareSystems software

Go was designed for writing systems software. Go was designed for writing systems software.
Let's see how the concurrency features come into play.Let's see how the concurrency features come into play. 4141

Example: Google SearchExample: Google Search

Q: What does Google search do?Q: What does Google search do?

A: Given a query, return a page of search results (and some ads).A: Given a query, return a page of search results (and some ads).

Q: How do we get the search results?Q: How do we get the search results?

A: Send the query to Web search, Image search, YouTube, Maps, News,etc., then mix theA: Send the query to Web search, Image search, YouTube, Maps, News,etc., then mix the
results.results.

How do we implement this?How do we implement this? 4242

Google Search: A fake frameworkGoogle Search: A fake framework

We can simulate the search function, much as we simulated conversation before.We can simulate the search function, much as we simulated conversation before.

var (var (
 Web = fakeSearch("web") Web = fakeSearch("web")
 Image = fakeSearch("image") Image = fakeSearch("image")
 Video = fakeSearch("video") Video = fakeSearch("video")
))

type Search func(query string) Resulttype Search func(query string) Result

func fakeSearch(kind string) Search {func fakeSearch(kind string) Search {
 return func(query string) Result { return func(query string) Result {
 time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond) time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond)
 return Result(fmt.Sprintf("%s result for %q\n", kind, query)) return Result(fmt.Sprintf("%s result for %q\n", kind, query))
 } }
}}

4343

Google Search: Test the frameworkGoogle Search: Test the framework

func main() {func main() {
 rand.Seed(time.Now().UnixNano()) rand.Seed(time.Now().UnixNano())
 start := time.Now() start := time.Now()
 results := Google("golang")results := Google("golang")
 elapsed := time.Since(start) elapsed := time.Since(start)
 fmt.Println(results) fmt.Println(results)
 fmt.Println(elapsed) fmt.Println(elapsed)
}} Run

4444

Google Search 1.0Google Search 1.0

The Google function takes a query and returns a slice of Results (which are just strings).The Google function takes a query and returns a slice of Results (which are just strings).

Google invokes Web, Image, and Video searches serially, appending them to the results slice.Google invokes Web, Image, and Video searches serially, appending them to the results slice.

func Google(query string) (results []Result) {func Google(query string) (results []Result) {
 results = append(results, Web(query)) results = append(results, Web(query))
 results = append(results, Image(query)) results = append(results, Image(query))
 results = append(results, Video(query)) results = append(results, Video(query))
 return return
}} Run

4545

Google Search 2.0Google Search 2.0

Run the Web, Image, and Video searches concurrently, and wait for all results.Run the Web, Image, and Video searches concurrently, and wait for all results.

No locks. No locks. No condition variables. No condition variables. No callbacks.No callbacks.

func Google(query string) (results []Result) {func Google(query string) (results []Result) {
 c := make(chan Result) c := make(chan Result)
 go func() { c <- Web(query) } () go func() { c <- Web(query) } ()
 go func() { c <- Image(query) } () go func() { c <- Image(query) } ()
 go func() { c <- Video(query) } () go func() { c <- Video(query) } ()

 for i := 0; i < 3; i++ { for i := 0; i < 3; i++ {
 result := <-c result := <-c
 results = append(results, result) results = append(results, result)
 } }
 return return
}} Run

4646

Google Search 2.1Google Search 2.1

Don't wait for slow servers. No locks. Don't wait for slow servers. No locks. No condition variables. No condition variables. No callbacks.No callbacks.

 c := make(chan Result) c := make(chan Result)
 go func() { c <- Web(query) } () go func() { c <- Web(query) } ()
 go func() { c <- Image(query) } () go func() { c <- Image(query) } ()
 go func() { c <- Video(query) } () go func() { c <- Video(query) } ()

 timeout := time.After(80 * time.Millisecond) timeout := time.After(80 * time.Millisecond)
 for i := 0; i < 3; i++ { for i := 0; i < 3; i++ {
 select { select {
 case result := <-c: case result := <-c:
 results = append(results, result) results = append(results, result)
 case <-timeout: case <-timeout:
 fmt.Println("timed out") fmt.Println("timed out")
 return return
 } }
 } }
 return return Run

4747

Avoid timeoutAvoid timeout

Q: How do we avoid discarding results from slow servers?Q: How do we avoid discarding results from slow servers?

A: Replicate the servers. A: Replicate the servers. Send requests to multiple replicas, and use the first response.Send requests to multiple replicas, and use the first response.

func First(query string, replicas ...Search) Result {func First(query string, replicas ...Search) Result {
 c := make(chan Result) c := make(chan Result)
 searchReplica := func(i int) { c <- replicas[i](query) } searchReplica := func(i int) { c <- replicas[i](query) }
 for i := range replicas { for i := range replicas {
 go searchReplica(i) go searchReplica(i)
 } }
 return <-c return <-c
}}

4848

Using the First functionUsing the First function

func main() {func main() {
 rand.Seed(time.Now().UnixNano()) rand.Seed(time.Now().UnixNano())
 start := time.Now() start := time.Now()
 result := First("golang", result := First("golang",
 fakeSearch("replica 1"), fakeSearch("replica 1"),
 fakeSearch("replica 2")) fakeSearch("replica 2"))
 elapsed := time.Since(start) elapsed := time.Since(start)
 fmt.Println(result) fmt.Println(result)
 fmt.Println(elapsed) fmt.Println(elapsed)
}} Run

4949

Google Search 3.0Google Search 3.0

Reduce tail latency using replicated search servers.Reduce tail latency using replicated search servers.

 c := make(chan Result) c := make(chan Result)
 go func() { c <- First(query, Web1, Web2) } () go func() { c <- First(query, Web1, Web2) } ()
 go func() { c <- First(query, Image1, Image2) } () go func() { c <- First(query, Image1, Image2) } ()
 go func() { c <- First(query, Video1, Video2) } () go func() { c <- First(query, Video1, Video2) } ()
 timeout := time.After(80 * time.Millisecond) timeout := time.After(80 * time.Millisecond)
 for i := 0; i < 3; i++ { for i := 0; i < 3; i++ {
 select { select {
 case result := <-c: case result := <-c:
 results = append(results, result) results = append(results, result)
 case <-timeout: case <-timeout:
 fmt.Println("timed out") fmt.Println("timed out")
 return return
 } }
 } }
 return return Run

5050

And still…And still…

No locks. No locks. No condition variables. No condition variables. No callbacks.No callbacks. 5151

SummarySummary

In just a few simple transformations we used Go's concurrency primitives to convert aIn just a few simple transformations we used Go's concurrency primitives to convert a

slowslow

sequentialsequential

failure-sensitivefailure-sensitive

program into one that isprogram into one that is

fastfast

concurrentconcurrent

replicatedreplicated

robust.robust. 5252

More party tricksMore party tricks

There are endless ways to use these tools, many presented elsewhere.There are endless ways to use these tools, many presented elsewhere.

Chatroulette toy:Chatroulette toy:

golang.org/s/chat-roulettegolang.org/s/chat-roulette (http://golang.org/s/chat-roulette) (http://golang.org/s/chat-roulette)

Load balancer:Load balancer:

golang.org/s/load-balancergolang.org/s/load-balancer (http://golang.org/s/load-balancer) (http://golang.org/s/load-balancer)

Concurrent prime sieve:Concurrent prime sieve:

golang.org/s/prime-sievegolang.org/s/prime-sieve (http://golang.org/s/prime-sieve) (http://golang.org/s/prime-sieve)

Concurrent power series (by McIlroy):Concurrent power series (by McIlroy):

golang.org/s/power-seriesgolang.org/s/power-series (http://golang.org/s/power-series) (http://golang.org/s/power-series) 5353

http://golang.org/s/chat-roulette
http://golang.org/s/load-balancer
http://golang.org/s/prime-sieve
http://golang.org/s/power-series

Don't overdo itDon't overdo it

They're fun to play with, but don't overuse these ideas.They're fun to play with, but don't overuse these ideas.

Goroutines and channels are big ideas. They're tools for program construction.Goroutines and channels are big ideas. They're tools for program construction.

But sometimes all you need is a reference counter.But sometimes all you need is a reference counter.

Go has "sync" and "sync/atomic" packages that provide mutexes, condition variables, etc.Go has "sync" and "sync/atomic" packages that provide mutexes, condition variables, etc.
They provide tools for smaller problems.They provide tools for smaller problems.

Often, these things will work together to solve a bigger problem.Often, these things will work together to solve a bigger problem.

Always use the right tool for the job.Always use the right tool for the job. 5454

ConclusionsConclusions

Goroutines and channels make it easy to express complex operations dealing withGoroutines and channels make it easy to express complex operations dealing with

multiple inputsmultiple inputs

multiple outputsmultiple outputs

timeoutstimeouts

failurefailure

And they're fun to use.And they're fun to use. 5555

LinksLinks

Go Home Page:Go Home Page:

golang.orggolang.org (http://golang.org) (http://golang.org)

Go Tour (learn Go in your browser)Go Tour (learn Go in your browser)

tour.golang.orgtour.golang.org (http://tour.golang.org) (http://tour.golang.org)

Package documentation:Package documentation:

golang.org/pkggolang.org/pkg (http://golang.org/pkg) (http://golang.org/pkg)

Articles galore:Articles galore:

golang.org/docgolang.org/doc (http://golang.org/doc) (http://golang.org/doc)

Concurrency is not parallelism:Concurrency is not parallelism:

golang.org/s/concurrency-is-not-parallelismgolang.org/s/concurrency-is-not-parallelism (http://golang.org/s/concurrency-is-not-parallelism) (http://golang.org/s/concurrency-is-not-parallelism) 5656

http://golang.org/
http://tour.golang.org/
http://golang.org/pkg
http://golang.org/doc
http://golang.org/s/concurrency-is-not-parallelism

Thank youThank you

Rob PikeRob Pike
GoogleGoogle
http://golang.org/s/plusrobhttp://golang.org/s/plusrob (http://golang.org/s/plusrob) (http://golang.org/s/plusrob)

@rob_pike@rob_pike (http://twitter.com/rob_pike) (http://twitter.com/rob_pike)

http://golang.orghttp://golang.org (http://golang.org) (http://golang.org)

http://golang.org/s/plusrob
http://twitter.com/rob_pike
http://golang.org/

