
2021/3/27 26. Design of CPython’s Garbage Collector — Python Developer's Guide

https://devguide.python.org/garbage_collector/ 1/10

26. Design of CPython’s Garbage Collector
Author: Pablo Galindo Salgado

26.1. Abstract

The main garbage collection algorithm used by CPython is reference counting. The basic
idea is that CPython counts how many different places there are that have a reference to
an object. Such a place could be another object, or a global (or static) C variable, or a local
variable in some C function. When an object’s reference count becomes zero, the object
is deallocated. If it contains references to other objects, their reference counts are decre-
mented. Those other objects may be deallocated in turn, if this decrement makes their
reference count become zero, and so on. The reference count field can be examined us-
ing the sys.getrefcount function (notice that the value returned by this function is al-
ways 1 more as the function also has a reference to the object when called):

The main problem with the reference counting scheme is that it does not handle refer-
ence cycles. For instance, consider this code:

In this example, container holds a reference to itself, so even when we remove our ref-
erence to it (the variable “container”) the reference count never falls to 0 because it still
has its own internal reference. Therefore it would never be cleaned just by simple refer-
ence counting. For this reason some additional machinery is needed to clean these refer-
ence cycles between objects once they become unreachable. This is the cyclic garbage
collector, usually called just Garbage Collector (GC), even though reference counting is
also a form of garbage collection.

26.2. Memory layout and object structure

Normally the C structure supporting a regular Python object looks as follows:

>>> x = object()
>>> sys.getrefcount(x)
2
>>> y = x
>>> sys.getrefcount(x)
3
>>> del y
>>> sys.getrefcount(x)
2

>>>

>>> container = []
>>> container.append(container)
>>> sys.getrefcount(container)
3
>>> del container

>>>

 v: latest

onlyice
Highlight
这篇文章中下面提到的 GC，主要是指处理循环依赖用的 cyclic garbage collector，而不是指 Python 整体的 GC 算法。对于主要在起使用的引用计数系统，被称为 refcounting system。

2021/3/27 26. Design of CPython’s Garbage Collector — Python Developer's Guide

https://devguide.python.org/garbage_collector/ 2/10

In order to support the garbage collector, the memory layout of objects is altered to ac-
commodate extra information before the normal layout:

In this way the object can be treated as a normal python object and when the extra in-
formation associated to the GC is needed the previous fields can be accessed by a simple
type cast from the original object: ((PyGC_Head *)(the_object)-1).

As is explained later in the Optimization: reusing fields to save memory section, these
two extra fields are normally used to keep doubly linked lists of all the objects tracked by
the garbage collector (these lists are the GC generations, more on that in the Optimiza-
tion: generations section), but they are also reused to fulfill other purposes when the full
doubly linked list structure is not needed as a memory optimization.

Doubly linked lists are used because they efficiently support most frequently required
operations. In general, the collection of all objects tracked by GC are partitioned into dis-
joint sets, each in its own doubly linked list. Between collections, objects are partitioned
into “generations”, reflecting how often they’ve survived collection attempts. During col-
lections, the generation(s) being collected are further partitioned into, e.g., sets of reach-
able and unreachable objects. Doubly linked lists support moving an object from one
partition to another, adding a new object, removing an object entirely (objects tracked by
GC are most often reclaimed by the refcounting system when GC isn’t running at all!), and
merging partitions, all with a small constant number of pointer updates. With care, they
also support iterating over a partition while objects are being added to - and removed
from - it, which is frequently required while GC is running.

Specific APIs are offered to allocate, deallocate, initialize, track, and untrack objects with
GC support. These APIs can be found in the Garbage Collector C API documentation.

Apart from this object structure, the type object for objects supporting garbage collection
must include the Py_TPFLAGS_HAVE_GC in its tp_flags slot and provide an implementa-

object -----> +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ \
 | ob_refcnt | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | PyObject_HEA
 | *ob_type | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /
 | ... |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ \
 | *_gc_next | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | PyGC_Head
 | *_gc_prev | |
object -----> +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /
 | ob_refcnt | \
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | PyObject_HEA
 | *ob_type | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /
 | ... |

 v: latest

https://docs.python.org/3.8/c-api/gcsupport.html
onlyice
Highlight
使用双向链表的是因为它支持了这套 GC 系统中的大部分操作。GC 会把所有 object 分在 3 个不相交的集合中，每个集合表示不同的 generation，不同的 generation 其中的 object 经历过的 GC 次数不一样。新的 object 一开始会在某个代表新 object 的 generation 中，一旦经历了多次 GC 还存活后，就会被移动到代表次新的 generation，再经历多次 GC 没被回收后，就会到代表最旧的 generation。这其中的一些操作，适合用双链表来表达：

* 从一个 generation 集合挪动到另一 generation
* 向 generation 增加或删除一个 object
* 遍历一个 generation，即使同时还有 object 被加入或者删除

这些操作对于双链表的时间复杂度都是 O(1)。

onlyice
Highlight
为了支持 GC，CPython 在每个 PyObject 前面加了两个指针，使其可以成为双向链表的节点。

为什么使用双向链表，下面有详细描述。

2021/3/27 26. Design of CPython’s Garbage Collector — Python Developer's Guide

https://devguide.python.org/garbage_collector/ 3/10

tion of the tp_traverse handler. Unless it can be proven that the objects cannot form
reference cycles with only objects of its type or unless the type is immutable, a tp_clear
implementation must also be provided.

26.3. Identifying reference cycles

The algorithm that CPython uses to detect those reference cycles is implemented in the
gc module. The garbage collector only focuses on cleaning container objects (i.e. objects
that can contain a reference to one or more objects). These can be arrays, dictionaries,
lists, custom class instances, classes in extension modules, etc. One could think that
cycles are uncommon but the truth is that many internal references needed by the inter-
preter create cycles everywhere. Some notable examples:

Exceptions contain traceback objects that contain a list of frames that
contain the exception itself.
Module-level functions reference the module’s dict (which is needed to
resolve globals), which in turn contains entries for the module-level
functions.
Instances have references to their class which itself references its mod-
ule, and the module contains references to everything that is inside (and
maybe other modules) and this can lead back to the original instance.
When representing data structures like graphs, it is very typical for them
to have internal links to themselves.

To correctly dispose of these objects once they become unreachable, they need to be
identified first. Inside the function that identifies cycles, two double-linked lists are main-
tained: one list contains all objects to be scanned, and the other will contain all objects
“tentatively” unreachable.

To understand how the algorithm works, Let’s take the case of a circular linked list which
has one link referenced by a variable A, and one self-referencing object which is com-
pletely unreachable:

>>> import gc

>>> class Link:
... def __init__(self, next_link=None):
... self.next_link = next_link

>>> link_3 = Link()
>>> link_2 = Link(link_3)
>>> link_1 = Link(link_2)
>>> link_3.next_link = link_1
>>> A = link_1
>>> del link_1, link_2, link_3

>>> link_4 = Link()
>>> link_4.next_link = link_4
>>> del link_4

Collect the unreachable Link object (and its .__dict__ dict).

>>>

 v: latest

onlyice
Highlight
循环依赖的现象非常常见。Python 本身也会有很多场景引发循环依赖。

2021/3/27 26. Design of CPython’s Garbage Collector — Python Developer's Guide

https://devguide.python.org/garbage_collector/ 4/10

When the GC starts, it has all the container objects it wants to scan on the first linked list.
The objective is to move all the unreachable objects. Since most objects turn out to be
reachable, it is much more efficient to move the unreachable as this involves fewer
pointer updates.

Every object that supports garbage collection will have an extra reference count field ini-
tialized to the reference count (gc_ref in the figures) of that object when the algorithm
starts. This is because the algorithm needs to modify the reference count to do the com-
putations and in this way the interpreter will not modify the real reference count field.

The GC then iterates over all containers in the first list and decrements by one the gc_ref
field of any other object that container is referencing. Doing this makes use of the
tp_traverse slot in the container class (implemented using the C API or inherited by a
superclass) to know what objects are referenced by each container. After all the objects
have been scanned, only the objects that have references from outside the “objects to
scan” list will have gc_refs > 0.

Notice that having gc_refs == 0 does not imply that the object is unreachable. This is
because another object that is reachable from the outside (gc_refs > 0) can still have
references to it. For instance, the link_2 object in our example ended having gc_refs ==
0 but is referenced still by the link_1 object that is reachable from the outside. To obtain
the set of objects that are really unreachable, the garbage collector re-scans the con-
tainer objects using the tp_traverse slot; this time with a different traverse function that
marks objects with gc_refs == 0 as “tentatively unreachable” and then moves them to
the tentatively unreachable list. The following image depicts the state of the lists in a mo-

>>> gc.collect()
2

 v: latest

onlyice
Highlight
下面的文字描述和插图，解释了检测循环依赖的算法是如何运行的。方法总结起来是：

开始遍历所有的 container object
每遇到一个 container object，将其引用的其他 object 的 ref count 减 1；如果一个 object 的 ref count 变为 0，则将其加入另外一个双向链表（称之为 unreachable 链表），这个双链表表示其中的 object 有可能已经是 unreachable

因为循环依赖是 container object 互相包含引起，上面这个过程即是说，如果将一个 object 被 container object 引用的计数全部去除，它的 ref count 变为 0 时，它就可能是 unreachable 的。

遍历完所有 container object 后，此时 ref count 不为 0 的 object 才是有外部引用的 object。再遍历一次 container object，将其中 ref count 不为 0 的 object 标记为 reachable，同时将其包含的 object 也标记为 reachable。因上一过程中可能为 unreachable 的 object 也有可能是仍被引用的，这一次遍历会将它们重新标记为 reachable。

这一次遍历结束后，仍然被标记为 unreachable 的 object，则是真正 unreachable 的，会被 GC 回收。

GC 算法在遍历的过程中是广度优先的（BFS）。

2021/3/27 26. Design of CPython’s Garbage Collector — Python Developer's Guide

https://devguide.python.org/garbage_collector/ 5/10

ment when the GC processed the link_3 and link_4 objects but has not processed
link_1 and link_2 yet.

Then the GC scans the next link_1 object. Because it has gc_refs == 1, the gc does not
do anything special because it knows it has to be reachable (and is already in what will
become the reachable list):

When the GC encounters an object which is reachable (gc_refs > 0), it traverses its ref-
erences using the tp_traverse slot to find all the objects that are reachable from it, mov-
ing them to the end of the list of reachable objects (where they started originally) and set-
ting its gc_refs field to 1. This is what happens to link_2 and link_3 below as they are
reachable from link_1. From the state in the previous image and after examining the ob-
jects referred to by link_1 the GC knows that link_3 is reachable after all, so it is moved
back to the original list and its gc_refs field is set to 1 so that if the GC visits it again, it
will know that it’s reachable. To avoid visiting an object twice, the GC marks all objects
that have already been visited once (by unsetting the PREV_MASK_COLLECTING flag) so that
if an object that has already been processed is referenced by some other object, the GC
does not process it twice.

 v: latest

2021/3/27 26. Design of CPython’s Garbage Collector — Python Developer's Guide

https://devguide.python.org/garbage_collector/ 6/10

Notice that an object that was marked as “tentatively unreachable” and was later moved
back to the reachable list will be visited again by the garbage collector as now all the ref-
erences that that object has need to be processed as well. This process is really a breadth
first search over the object graph. Once all the objects are scanned, the GC knows that all
container objects in the tentatively unreachable list are really unreachable and can thus
be garbage collected.

Pragmatically, it’s important to note that no recursion is required by any of this, and
neither does it in any other way require additional memory proportional to the number
of objects, number of pointers, or the lengths of pointer chains. Apart from O(1) storage
for internal C needs, the objects themselves contain all the storage the GC algorithms
require.

26.3.1. Why moving unreachable objects is better

It sounds logical to move the unreachable objects under the premise that most objects
are usually reachable, until you think about it: the reason it pays isn’t actually obvious.

Suppose we create objects A, B, C in that order. They appear in the young generation in
the same order. If B points to A, and C to B, and C is reachable from outside, then the ad-
justed refcounts after the first step of the algorithm runs will be 0, 0, and 1 respectively
because the only reachable object from the outside is C.

When the next step of the algorithm finds A, A is moved to the unreachable list. The same
for B when it’s first encountered. Then C is traversed, B is moved back to the reachable
list. B is eventually traversed, and then A is moved back to the reachable list.

So instead of not moving at all, the reachable objects B and A are each moved twice. Why
is this a win? A straightforward algorithm to move the reachable objects instead would
move A, B, and C once each. The key is that this dance leaves the objects in order C, B, A -
it’s reversed from the original order. On all subsequent scans, none of them will move.
Since most objects aren’t in cycles, this can save an unbounded number of moves across
an unbounded number of later collections. The only time the cost can be higher is the
first time the chain is scanned.

26.4. Destroying unreachable objects

Once the GC knows the list of unreachable objects, a very delicate process starts with the
objective of completely destroying these objects. Roughly, the process follows these
steps in order:

1. Handle and clean weak references (if any). If an object that is in the unreachable set
is going to be destroyed and has weak references with callbacks, these callbacks
need to be honored. This process is very delicate as any error can cause objects
that will be in an inconsistent state to be resurrected or reached by some Python
functions invoked from the callbacks. In addition, weak references that also are part
of the unreachable set (the object and its weak reference are in cycles that are un-
reachable) need to be cleaned immediately, without executing the callback. Other-

 v: latest

onlyice
Highlight
为什么移动 unreachable object 是更好的（对比移动 reachable object）？

首要的原因是，大部分的 object 都是 reachable 的。

其次是，假如有 A, B, C 三个 object，C 被外部引用，B 被 C 引用，A 被 B 引用。第一次 GC 时依次扫了 A、B、C，A 和 B 会被挪至 unreachable 链表中，然后因为 C 还有外部引用，A、B 又被挪回来。但是 Python 在此操作过程中，会使得下次 GC 时扫描的顺序不再是 ABC，而是 CBA，这样 A、B 就不会再被挪动。

onlyice
Highlight
这段描述的语言细节我未理解，跳过没看。

2021/3/27 26. Design of CPython’s Garbage Collector — Python Developer's Guide

https://devguide.python.org/garbage_collector/ 7/10

wise it will be triggered later, when the tp_clear slot is called, causing havoc. Ignor-
ing the weak reference’s callback is fine because both the object and the weakref
are going away, so it’s legitimate to say the weak reference is going away first.

2. If an object has legacy finalizers (tp_del slot) move them to the gc.garbage list.
3. Call the finalizers (tp_finalize slot) and mark the objects as already finalized to

avoid calling them twice if they resurrect or if other finalizers have removed the ob-
ject first.

4. Deal with resurrected objects. If some objects have been resurrected, the GC finds
the new subset of objects that are still unreachable by running the cycle detection
algorithm again and continues with them.

5. Call the tp_clear slot of every object so all internal links are broken and the refer-
ence counts fall to 0, triggering the destruction of all unreachable objects.

26.5. Optimization: generations

In order to limit the time each garbage collection takes, the GC uses a popular optimiza-
tion: generations. The main idea behind this concept is the assumption that most objects
have a very short lifespan and can thus be collected shortly after their creation. This has
proven to be very close to the reality of many Python programs as many temporarily ob-
jects are created and destroyed very fast. The older an object is the less likely it is that it
will become unreachable.

To take advantage of this fact, all container objects are segregated into three
spaces/generations. Every new object starts in the first generation (generation 0). The
previous algorithm is executed only over the objects of a particular generation and if an
object survives a collection of its generation it will be moved to the next one (generation
1), where it will be surveyed for collection less often. If the same object survives another
GC round in this new generation (generation 1) it will be moved to the last generation
(generation 2) where it will be surveyed the least often.

Generations are collected when the number of objects that they contain reaches some
predefined threshold, which is unique for each generation and is lower the older the gen-
erations are. These thresholds can be examined using the gc.get_threshold function:

The content of these generations can be examined using the
gc.get_objects(generation=NUM) function and collections can be triggered specifically
in a generation by calling gc.collect(generation=NUM).

>>> import gc
>>> gc.get_threshold()
(700, 10, 10)

>>>

>>> import gc
>>> class MyObj:
... pass
...

Move everything to the last generation so it's easier to inspect
the younger generations.

>>>

 v: latest

onlyice
Highlight
这个优化是指将 object 分为 3 个 generations，gen 0, 1, 2。前面的 gen 比后面的年轻。

一开始 object 会被放进 gen 0，直至 gen 0 中的 object 个数大于阈值，才会触发 gc；如果在一轮 gc 后存活下来，该 object 就会被移到 older gen 中。阈值默认是 (700, 10, 10)，可以通过 `gc.get_threshold()` `gc.set_threshold()` 查看及修改。

Python 会把触发扫描的 gen 以及其更年轻的 gen 一起做扫描。比如 gen 2 的对象个数超过 10 触发了扫描，那么 Python 会先扫 gen 0，再扫 gen 1，最后扫 gen 2。

背后的逻辑是：大部分的 object 都是 short living 的，很快就可以被回收，因此 gen 0 触发阈值并被回收的概率是最高的。越 older 的 gen 中的 object 可能是越 long living 的，因此扫描它的次数也应该更低。

但从阈值的默认设置 (700, 10, 10) 来看，似乎看不出 older gen 会被扫描的次数更少（因为 10 远小于 700）。这是因为 Python 又有一套逻辑（26.5.1 中所描述的）来避免对 gen 2 的经常扫描。对 gen 2 的扫描意味着 gen 0, gen 1 也会先被扫，因此被称为 full collection。在很多场景中，有一些 object 会一直存在，作为进程的缓存，但它们很少需要被回收。因此 gen 2 的元素个数可能非常多，而且随着个数增长，对其做 gc 扫描的代价越来越高。因此 Python 增加了一个新的逻辑，只有 gen 0 及 gen 1 的元素总数（long_living_pending）大于 gen 0, 1, 2 元素总数（long_living_total）的 25%，才对 gen 2 做 GC。这样保证了 gen 2 很大时，不会频繁地对 gen 2 做扫描。

2021/3/27 26. Design of CPython’s Garbage Collector — Python Developer's Guide

https://devguide.python.org/garbage_collector/ 8/10

26.5.1. Collecting the oldest generation

In addition to the various configurable thresholds, the GC only triggers a full collection of
the oldest generation if the ratio long_lived_pending / long_lived_total is above a
given value (hardwired to 25%). The reason is that, while “non-full” collections (i.e., collec-
tions of the young and middle generations) will always examine roughly the same num-
ber of objects (determined by the aforementioned thresholds) the cost of a full collection
is proportional to the total number of long-lived objects, which is virtually unbounded.
Indeed, it has been remarked that doing a full collection every <constant number> of ob-
ject creations entails a dramatic performance degradation in workloads which consist of
creating and storing lots of long-lived objects (e.g. building a large list of GC-tracked ob-
jects would show quadratic performance, instead of linear as expected). Using the above
ratio, instead, yields amortized linear performance in the total number of objects (the ef-
fect of which can be summarized thusly: “each full garbage collection is more and more
costly as the number of objects grows, but we do fewer and fewer of them”).

26.6. Optimization: reusing fields to save memory

In order to save memory, the two linked list pointers in every object with GC support are
reused for several purposes. This is a common optimization known as “fat pointers” or
“tagged pointers”: pointers that carry additional data, “folded” into the pointer, meaning
stored inline in the data representing the address, taking advantage of certain properties
of memory addressing. This is possible as most architectures align certain types of data
to the size of the data, often a word or multiple thereof. This discrepancy leaves a few of
the least significant bits of the pointer unused, which can be used for tags or to keep

>>> gc.collect()
0

Create a reference cycle.

>>> x = MyObj()
>>> x.self = x

Initially the object is in the youngest generation.

>>> gc.get_objects(generation=0)
[..., <__main__.MyObj object at 0x7fbcc12a3400>, ...]

After a collection of the youngest generation the object
moves to the next generation.

>>> gc.collect(generation=0)
0
>>> gc.get_objects(generation=0)
[]
>>> gc.get_objects(generation=1)
[..., <__main__.MyObj object at 0x7fbcc12a3400>, ...]

 v: latest

onlyice
Highlight
这一节跟 Python 的 C API 相关，没有使用场景，略过不看。

2021/3/27 26. Design of CPython’s Garbage Collector — Python Developer's Guide

https://devguide.python.org/garbage_collector/ 9/10

other information – most often as a bit field (each bit a separate tag) – as long as code
that uses the pointer masks out these bits before accessing memory. E.g., on a 32-bit ar-
chitecture (for both addresses and word size), a word is 32 bits = 4 bytes, so word-aligned
addresses are always a multiple of 4, hence end in 00, leaving the last 2 bits available;
while on a 64-bit architecture, a word is 64 bits = 8 bytes, so word-aligned addresses end
in 000, leaving the last 3 bits available.

The CPython GC makes use of two fat pointers that correspond to the extra fields of
PyGC_Head discussed in the Memory layout and object structure section:

Warning: Because the presence of extra information, “tagged” or “fat”
pointers cannot be dereferenced directly and the extra information must be
stripped off before obtaining the real memory address. Special care needs
to be taken with functions that directly manipulate the linked lists, as these
functions normally assume the pointers inside the lists are in a consistent
state.

The _gc_prev field is normally used as the “previous” pointer to maintain the
doubly linked list but its lowest two bits are used to keep the flags
PREV_MASK_COLLECTING and _PyGC_PREV_MASK_FINALIZED. Between collections, the
only flag that can be present is _PyGC_PREV_MASK_FINALIZED that indicates if an ob-
ject has been already finalized. During collections _gc_prev is temporarily used for
storing a copy of the reference count (gc_refs), in addition to two flags, and the GC
linked list becomes a singly linked list until _gc_prev is restored.
The _gc_next field is used as the “next” pointer to maintain the doubly linked list
but during collection its lowest bit is used to keep the NEXT_MASK_UNREACHABLE flag
that indicates if an object is tentatively unreachable during the cycle detection al-
gorithm. This is a drawback to using only doubly linked lists to implement partitions:
while most needed operations are constant-time, there is no efficient way to de-
termine which partition an object is currently in. Instead, when that’s needed, ad
hoc tricks (like the NEXT_MASK_UNREACHABLE flag) are employed.

26.7. Optimization: delay tracking containers

Certain types of containers cannot participate in a reference cycle, and so do not need to
be tracked by the garbage collector. Untracking these objects reduces the cost of garbage
collection. However, determining which objects may be untracked is not free, and the
costs must be weighed against the benefits for garbage collection. There are two possible
strategies for when to untrack a container:

1. When the container is created.
2. When the container is examined by the garbage collector.

As a general rule, instances of atomic types aren’t tracked and instances of non-atomic
types (containers, user-defined objects…) are. However, some type-specific optimizations
can be present in order to suppress the garbage collector footprint of simple instances.
Some examples of native types that benefit from delayed tracking:

 v: latest

onlyice
Highlight
这一节指 Python 做的优化，来判断哪些 container object 并不需要被扫描，从而提升扫描的性能。比如仅包含不可变类型的 tuple、dict 不需要被扫描：

```python
t1 = (1, 2, "hello")   # 不扫描
t2 = (1, 2, [some_obj])   # 扫描

d1 = {'a': 1}      # 不扫描
d2 = {'a': some_obj｝  # 扫描
```


2021/3/27 26. Design of CPython’s Garbage Collector — Python Developer's Guide

https://devguide.python.org/garbage_collector/ 10/10

Tuples containing only immutable objects (integers, strings etc, and recursively,
tuples of immutable objects) do not need to be tracked. The interpreter creates a
large number of tuples, many of which will not survive until garbage collection. It is
therefore not worthwhile to untrack eligible tuples at creation time. Instead, all
tuples except the empty tuple are tracked when created. During garbage collection
it is determined whether any surviving tuples can be untracked. A tuple can be un-
tracked if all of its contents are already not tracked. Tuples are examined for un-
tracking in all garbage collection cycles. It may take more than one cycle to untrack
a tuple.
Dictionaries containing only immutable objects also do not need to be tracked. Dic-
tionaries are untracked when created. If a tracked item is inserted into a dictionary
(either as a key or value), the dictionary becomes tracked. During a full garbage col-
lection (all generations), the collector will untrack any dictionaries whose contents
are not tracked.

The garbage collector module provides the Python function is_tracked(obj), which re-
turns the current tracking status of the object. Subsequent garbage collections may
change the tracking status of the object.

>>> gc.is_tracked(0)
False
>>> gc.is_tracked("a")
False
>>> gc.is_tracked([])
True
>>> gc.is_tracked({})
False
>>> gc.is_tracked({"a": 1})
False
>>> gc.is_tracked({"a": []})
True

>>>

 v: latest

