
2021/3/26 Garbage collection in Python: things you need to know | Artem Golubin

https://rushter.com/blog/python-garbage-collector/ 1/13

Artem Golubin Blog B A D

Garbage collection in Python: things you need to know
G Last updated on August 10, 2020, in python

This article describes garbage collection (GC) in Python 3.7.

Usually, you do not need to worry about memory management. When objects

are no longer needed, Python automatically reclaims memory from them.

However, understanding how GC works can help you write better and faster

Python programs.

Memory management

Unlike many other languages, Python does not necessarily release the

memory back to the Operating System. Instead, it has a dedicated object

allocator for objects smaller than 512 bytes, which keeps some chunks of

already allocated memory for further use in the future. The amount of

memory that Python holds depends on the usage patterns. In some cases, all

allocated memory could be released only when a Python process terminates.

If a long-running Python process takes more memory over time, it does not

necessarily mean that you have memory leaks. If you are interested in

Python's memory model, you can read my article on memory management.

Since most objects are small, custom memory allocator saves a lot of time on

memory allocations. Even simple programs that import third-party libraries

can allocate millions of objects during the program lifetime.

Garbage collection algorithms

In Python, everything is an object. Even integers. Knowing when to allocate

them is easy. Python does it when you need to create a new object. Unlike

allocation, automatic deallocation is tricky. Python needs to know when your

object is no longer needed. Removing objects prematurely will result in a

program crash

https://rushter.com/
https://rushter.com/blog/
https://twitter.com/rushter
https://github.com/rushter
https://rushter.com/blog/feed/
https://rushter.com/blog/category/python/
https://rushter.com/blog/python-memory-managment/
https://rushter.com/blog/python-object-allocation-statistics/
onlyice
Highlight
Python 的内存管理是另外一个话题。

细节是：对于 512 字节以内的对象，即使它不再被使用，Python 也可能不会马上把它释放。因为小对象如果能被合理重用，会比频繁地 alloc / dealloc 性能更高。

2021/3/26 Garbage collection in Python: things you need to know | Artem Golubin

https://rushter.com/blog/python-garbage-collector/ 2/13

program crash.

Garbage collections algorithms track which objects can be deallocated and

pick an optimal time to deallocate them. Standard CPython's garbage

collector has two components, the reference counting collector and the

generational garbage collector, known as gc module.

The reference counting algorithm is incredibly efficient and straightforward,

but it cannot detect reference cycles. That is why Python has a supplemental

algorithm called generational cyclic GC. It deals with reference cycles only.

The reference counting module is fundamental to Python and can't be

disabled, whereas the cyclic GC is optional and can be triggered manually.

Reference counting

Reference counting is a simple technique in which objects are deallocated

when there is no reference to them in a program.

Every variable in Python is a reference (a pointer) to an object and not the

actual value itself. For example, the assignment statement just adds a new

reference to the right-hand side. A single object can have many references

(variable names).

This code creates two references to a single object:

An assignment statement itself (everything on the left) never copies or creates

new data.

To keep track of references, every object (even integer) has an extra field

called reference count that is increased or decreased when a pointer to the

object is created or deleted. See Objects, Types and Reference Counts section,

for a detailed explanation.

EXAMPLES, WHERE THE REFERENCE COUNT INCREASES:

a = [1, 2, 3]
b = a

https://en.wikipedia.org/wiki/Reference_counting
https://docs.python.org/3.6/library/gc.html
https://docs.python.org/3.6/c-api/intro.html#objects-types-and-reference-counts
onlyice
Highlight
Python 的 gc 使用引用计数（reference counting）的算法。但引用计数无法检测循环依赖（reference cycles）。Python 通过额外的 generational cyclic GC 来处理循环依赖。

onlyice
Highlight
一些增加了 value 的 reference count 的场景。

2021/3/26 Garbage collection in Python: things you need to know | Artem Golubin

https://rushter.com/blog/python-garbage-collector/ 3/13

assignment operator

argument passing
appending an object to a list (object's reference count will be increased).

If the reference counting field reaches zero, CPython automatically calls the

object-specific memory deallocation function. If an object contains references

to other objects, then their reference count is automatically decremented too.

Thus other objects may be deallocated in turn. For example, when a list is

deleted, the reference count for all its items is decreased. If another variable

references an item in a list, the item won't be deallocated.

Variables, which are declared outside of functions, classes, and blocks, are

called globals. Usually, such variables live until the end of the Python's

process. Thus, the reference count of objects, which are referred by global

variables, never drops to zero. To keep them alive, all globals are stored inside

a dictionary. You can get it by calling the function.

Variables, which are defined inside blocks (e.g., in a function or class) have a

local scope (i.e., they are local to its block). When Python interpreter exits

from a block, it destroys local variables and their references that were created

inside the block. In other words, it only destroys the names.

It's important to understand that until your program stays in a block, Python

interpreter assumes that all variables inside it are in use. To remove

something from memory, you need to either assign a new value to a variable

or exit from a block of code. In Python, the most popular block of code is a

function; this is where most of the garbage collection happens. That is

another reason to keep functions small and simple.

You can always check the number of current references using

function.

Here is a simple example:

globals()

sys.getrefcount

import sys

foo = []

2 references, 1 from the foo var and 1 from getrefcount
print(sys.getrefcount(foo))

onlyice
Highlight
全局变量（没在定义在某种块中）的值，其引用计数总是大于 0，使得它们不会被销毁。Python 将全局变量放在一个 dict 中，你可以使用 `globals()` 来获得。

onlyice
Highlight
定义在块（比如函数、类）中的 name，它是有 scope 的，一旦超出这个 scope（比如函数执行结束），其对应的 value 的引用计数即减少。大多数情况下，该 value 的引用计数变为 0，从而被销毁。

代码示例：

```python
a = None

def f1():
    # 在堆中创建了 [1, 2, 3] 这个对象，使 l 指向这个对象。对象引用计数为 1：
    l = [1, 2, 3]
    print(id(l))     # CPython 实现中，`id()` 的值是该对象的地址

    global a
    # 将 a 也指向 [1, 2, 3] 这个对象，对象引用计数为 2：
    a = l
    # 函数执行结束，l 离开此函数作用域，对象引用计数减为 1，未被销毁

def f2():
    # 在堆中创建了 [1, 2, 3] 这个对象，使 l 指向这个对象。对象引用计数为 1：
    l = [1, 2, 3]
    # 打印出对象的地址
    print(id(l))
    # 函数执行结束，l 离开此函数作用域，对象引用计数为 0，因此被销毁

if __name__ == '__main__':
    f1()
    f2()

    # 可以观察到 a 的地址与 f1 中 l 的地址相同，对象仍然存在
    print(id(a))
```

onlyice
Highlight

2021/3/26 Garbage collection in Python: things you need to know | Artem Golubin

https://rushter.com/blog/python-garbage-collector/ 4/13

IIn the example above, you can see that function's references get destroyed

after Python exits it.

Sometimes you need to remove a global or a local variable prematurely. To

do so, you can use the statement that removes a variable and its

reference (not the object itself). This is often useful when working in Jupyter

notebooks because all cell variables use the global scope.

The main reason why CPython uses reference counting is historical. There are

a lot of debates nowadays about the weaknesses of such a technique. Some

people claim that modern garbage collection algorithms can be more efficient

without reference counting at all. The reference counting algorithm has a lot

of issues, such as circular references, thread locking, and memory and

performance overhead. Reference counting is one of the reasons why Python

can't get rid of the GIL.

The main advantage of such an approach is that the objects can be

immediately and easily destroyed after they are no longer needed.

Generational garbage collector

Why do we need additional garbage collector when we have reference

counting?

Unfortunately, classical reference counting has a fundamental problem — it

cannot detect reference cycles. A reference cycle occurs when one or more

objects are referencing each other.

Here are two examples:

p (y g ())

def bar(a):
 # 4 references
 # from the foo var, function argument, getrefcount and Python's function stack
 print(sys.getrefcount(a))

bar(foo)
2 references, the function scope is destroyed
print(sys.getrefcount(foo))

del

https://wiki.python.org/moin/GlobalInterpreterLock
onlyice
Highlight

2021/3/26 Garbage collection in Python: things you need to know | Artem Golubin

https://rushter.com/blog/python-garbage-collector/ 5/13

Object 1 Object 2

lst

As we can see, the 'lst' object is pointing to itself, moreover, and

 are pointing to each other. The reference count for such objects is

always at least 1.

To get a better idea, you can play with a simple Python example:

object 1

object 2

import gc

We use ctypes moule to access our unreachable objects by memory address.
class PyObjectPyObject(ctypes.Structure):
 fields = [("refcnt", ctypes.c_long)]

gc.disable() # Disable generational gc

lst = []
lst.append(lst)

Store address of the list
lst_address = id(lst)

Destroy the lst reference
del lst

object_1 = {}
object_2 = {}
object_1['obj2'] = object_2
object_2['obj1'] = object_1

obj_address = id(object_1)

Destroy references
del object_1, object_2

Uncomment if you want to manually run garbage collection process
gc.collect()

Check the reference count
print(PyObjectPyObject.from_address(obj_address).refcnt)
print(PyObjectPyObject.from_address(lst_address).refcnt)

2021/3/26 Garbage collection in Python: things you need to know | Artem Golubin

https://rushter.com/blog/python-garbage-collector/ 6/13

In the example above, the statement removes the references to our

objects (i.e., decreases reference count by 1). After Python executes the

statement, our objects are no longer accessible from Python code. However,

such objects are still sitting in memory. That happens because they are still

referencing each other, and the reference count of each object is 1. You can

visually explore such relations using objgraph module.

To resolve this issue, the additional cycle-detecting algorithm was introduced

in Python 1.5. The gc module is responsible for this and exists only for dealing

with such a problem.

Reference cycles can only occur in container objects (i.e., in objects that can

contain other objects), such as lists, dictionaries, classes, tuples. The garbage

collector algorithm does not track all immutable types except for a tuple.

Tuples and dictionaries containing only immutable objects can also be

untracked depending on certain conditions. Thus, the reference counting

technique handles all non-circular references.

When does the generational GC trigger

Unlike reference counting, cyclic GC does not work in real-time and runs

periodically. To reduce the frequency of GC calls and micro pauses CPython

uses various heuristics.

The GC classifies container objects into three generations. Every new object

starts in the first generation. If an object survives a garbage collection round,

it moves to the older (higher) generation. Lower generations are collected

more often than higher. Because most of the newly created objects die

young, it improves GC performance and reduces the GC pause time.

In order to decide when to run, each generation has an individual counter and

threshold. The counter stores the number of object allocations minus

deallocations since the last collection. Every time you allocate a new container

object, CPython checks whenever the counter of the first generation exceeds

the threshold value. If so, Python initiates the сollection process.

If we have two or more generations that currently exceed the threshold, GC

del

del

https://mg.pov.lt/objgraph/
https://docs.python.org/3.6/library/gc.html
onlyice
Highlight

2021/3/26 Garbage collection in Python: things you need to know | Artem Golubin

https://rushter.com/blog/python-garbage-collector/ 7/13

chooses the oldest one. That is because the oldest generations are also

collecting all previous (younger) generations. To reduce performance

degradation for long-living objects, the third generation has additional

requirements in order to be chosen.

The standard threshold values are set to (700, 10, 10) respectively, but you

can always check them using the function. You can also

adjust them for your particular workload by using the

function.

How to find reference cycles

It is hard to explain the reference cycle detection algorithm in a few

paragraphs. Basically, GC iterates over each container object and temporarily

removes all references to all container objects it references. After full iteration,

all objects which reference count lower than two are unreachable from

Python's code and thus can be collected.

To fully understand the cycle-finding algorithm, I recommend you to read an

original proposal from Neil Schemenauer and collect function from CPython's

source code. Also, the Quora answers and The Garbage Collector blog post

can be helpful.

Note that, the problem with finalizers, which was described in the original

proposal, has been fixed since Python 3.4. You can read about it in the PEP

442.

Performance tips

Cycles can easily happen in real life. Typically you encounter them in graphs,

linked lists or in structures, in which you need to keep track of relations

between objects. If your program has an intensive workload and requires low

latency, you need to avoid reference cycles as possible.

To avoid circular references in your code, you can use weak references, that

are implemented in the module. Unlike the usual references, the

 doesn't increase the reference count and returns if an object

was destroyed.

gc.get_threshold

gc.get_threshold

weakref

weakref.ref None

https://github.com/python/cpython/blob/051295a8c57cc649fa5eaa43526143984a147411/Modules/gcmodule.c#L94
http://arctrix.com/nas/python/gc/
https://github.com/python/cpython/blob/7d6ddb96b34b94c1cbdf95baa94492c48426404e/Modules/gcmodule.c#L902
https://www.quora.com/How-does-garbage-collection-in-Python-work-What-are-the-pros-and-cons
https://pythoninternal.wordpress.com/2014/08/04/the-garbage-collector/
http://legacy.python.org/dev/peps/pep-0442/

2021/3/26 Garbage collection in Python: things you need to know | Artem Golubin

https://rushter.com/blog/python-garbage-collector/ 8/13

In some cases, it is useful to disable GC and use it manually. The automatic

collection can be disabled by calling . To manually run the

collection process, you need to use .

How to find and debug reference cycles

Debugging reference cycles can be very frustrating especially when you use a

lot of third-party libraries.

The standard gc module provides a lot of useful helpers that can help in

debugging. If you set debugging flags to , all unreachable

objects found will be appended to list.

Once you have identified a problematic spot in your code you can visually

explore object's relations using objgraph.

gc.disable()

gc.collect()

DEBUG_SAVEALL

gc.garbage

import gc

gc.set_debug(gc.DEBUG_SAVEALL)

print(gc.get_count())
lst = []
lst.append(lst)
list_id = id(lst)
del lst
gc.collect()
for item in gc.garbage:
 print(item)
 assert list_id == id(item)

https://docs.python.org/3.6/library/gc.html
https://mg.pov.lt/objgraph/

2021/3/26 Garbage collection in Python: things you need to know | Artem Golubin

https://rushter.com/blog/python-garbage-collector/ 9/13

dict
7 items self

tuple
3 items

s_tuple

dict
1 items

dref

list
3 items

s_list

int
1

int set
3 items

s_set

dict
2 items

s_dict

int
3

int
2

ab

a

Conclusion

Most of the garbage collection is done by reference counting algorithm,

which we cannot tune at all. So, be aware of implementation specifics, but

don't worry about potential GC problems prematurely.

Hopefully, you have learned something new. If you have any questions left, I

will be glad to answer them in the comments below.

Z Popular posts in Python category

L python, M cpython internals, memory, advanced python

B RSS D

Want a monthly digest of these blog posts?

Email

Subscribe

https://rushter.com/blog/category/python/
https://rushter.com/blog/tags/cpython/
https://rushter.com/blog/tags/memory/
https://rushter.com/blog/tags/advanced-python/
https://twitter.com/intent/tweet?url=https://rushter.com/blog/python-garbage-collector/&text=Garbage%20collection%20in%20Python%3A%20things%20you%20need%20to%20know&via=rushter
https://rushter.com/blog/feed/

2021/3/26 Garbage collection in Python: things you need to know | Artem Golubin

https://rushter.com/blog/python-garbage-collector/ 10/13

No spam. No unnecessary emails.

Comments

Bob Hyman 3 years, 5 months ago (from disqus) #

Very interesting and useful description of the current state of affairs in Cython.

Are things different in other pythons? E.g, IPython.

Are there any projects underway to improve memory MGMT in python?

reply

Artem 3 years, 5 months ago (from disqus) #

Each implementation of Python uses its own collector. For example, Jyton
uses standard Java's gc (since it running on the JVM) , and PyPy uses Mark
and Sweep algorithm. The PyPy's gc is more complicated than CPython's and
has additional optimizations http://doc.pypy.org/en/release-
2.4.x/garbage_collection.html.

I'm not aware of any changes in IPython since it's just an interactive shell
running on CPython.

Regarding memory management, there are tens of proposals in the PEP
index, but only a few of them will be accepted in future.

reply

Madison 3 years, 5 months ago (from disqus) #

Nice article. One small correction worth making is that not all block statements
introduce a new execution scope. In particular a statement does not have its
own local scope any more than an statement does. For this most part this only
applies to and statements.

reply

Artem 3 years, 5 months ago (from disqus) #

Thanks, you are right. I was thinking about context's enter/exit.

with

if

def class

https://rushter.com/blog/python-garbage-collector/?#comment-18
https://rushter.com/blog/python-garbage-collector/?#comment-21
http://doc.pypy.org/en/release-2.4.x/garbage_collection.html
https://rushter.com/blog/python-garbage-collector/?#comment-19
https://rushter.com/blog/python-garbage-collector/?#comment-20

2021/3/26 Garbage collection in Python: things you need to know | Artem Golubin

https://rushter.com/blog/python-garbage-collector/ 11/13

reply

ben 2 years, 1 month ago (from disqus) #

Thanks for the explanation. Can you please confirm then, that it would be
pointless to import gc into jupyter notebook?

reply

Alice 8 months, 2 weeks ago #

Good write up.

reply

Simon 7 months, 3 weeks ago #

I don't understand why when you pass a variable to a function it has two more
reference counts instead of one. You said that it has one from the function
argument and one from Python's function stack. I don't know what is this
function stack. Otherwise this is a great article!

reply

Artem 7 months, 3 weeks ago #

Function stack keeps track of all local variables that are avaliable inside the
function.

reply

kanch 7 months ago #

Hi there, your article help me a lot in reduce my python application memory
usage.

Can I translate it into Chinese , and re-post with reference to my blog? I think it
will help more people struggling with python memory usage in long run
applications.

reply

https://rushter.com/blog/python-garbage-collector/?#comment-22
https://rushter.com/blog/python-garbage-collector/?#comment-98
https://rushter.com/blog/python-garbage-collector/?#comment-116
https://rushter.com/blog/python-garbage-collector/?#comment-117
https://rushter.com/blog/python-garbage-collector/?#comment-118

2021/3/26 Garbage collection in Python: things you need to know | Artem Golubin

https://rushter.com/blog/python-garbage-collector/ 12/13

p y

Artem 7 months ago #

Sure, you can translate it. Just link my article in your translation.

reply

jbo 5 months, 2 weeks ago #

Very well explained, just loved reading it and your other articles. Keep up the
good work .

reply

ferdizera 3 months, 3 weeks ago #

Simple and objective. Nice article. Nice explanation.

reply

jb 1 month, 1 week ago #

Thank you, clear and useful

reply

Lokumcu Hayri 3 weeks, 6 days ago #

No lollygagging, just to-the-point explanations and examples. Thanks!

reply

NAME

MESSAGE

Plain text or markdown

https://rushter.com/blog/python-garbage-collector/?#comment-119
https://rushter.com/blog/python-garbage-collector/?#comment-124
https://rushter.com/blog/python-garbage-collector/?#comment-132
https://rushter.com/blog/python-garbage-collector/?#comment-137
https://rushter.com/blog/python-garbage-collector/?#comment-141

2021/3/26 Garbage collection in Python: things you need to know | Artem Golubin

https://rushter.com/blog/python-garbage-collector/ 13/13

Send

Back to top

B A D

© 2009-2020, Artem Golubin, me@rushter.com

https://twitter.com/rushter
https://github.com/rushter
https://rushter.com/blog/feed/
mailto:me@rushter.com

