
4/27/2021 gob - The Go Programming Language

https://golang.org/pkg/encoding/gob/ 1/9

Package gob
import "encoding/gob"

Overview
Index
Examples

Overview ▾

Package gob manages streams of gobs - binary values exchanged between an Encoder (transmitter)
and a Decoder (receiver). A typical use is transporting arguments and results of remote procedure
calls (RPCs) such as those provided by package "net/rpc".

The implementation compiles a custom codec for each data type in the stream and is most e�cient
when a single Encoder is used to transmit a stream of values, amortizing the cost of compilation.

Basics

A stream of gobs is self-describing. Each data item in the stream is preceded by a speci�cation of its
type, expressed in terms of a small set of prede�ned types. Pointers are not transmitted, but the
things they point to are transmitted; that is, the values are �attened. Nil pointers are not permitted, as
they have no value. Recursive types work �ne, but recursive values (data with cycles) are problematic.
This may change.

To use gobs, create an Encoder and present it with a series of data items as values or addresses that
can be dereferenced to values. The Encoder makes sure all type information is sent before it is
needed. At the receive side, a Decoder retrieves values from the encoded stream and unpacks them
into local variables.

Types and Values

The source and destination values/types need not correspond exactly. For structs, �elds (identi�ed by
name) that are in the source but absent from the receiving variable will be ignored. Fields that are in
the receiving variable but missing from the transmitted type or value will be ignored in the destination.
If a �eld with the same name is present in both, their types must be compatible. Both the receiver and
transmitter will do all necessary indirection and dereferencing to convert between gobs and actual Go
values. For instance, a gob type that is schematically,

struct { A, B int }

can be sent from or received into any of these Go types:

struct { A, B int } // the same
*struct { A, B int } // extra indirection of the struct
struct { *A, **B int } // extra indirection of the fields
struct { A, B int64 } // different concrete value type; see below

onlyice

onlyice
典型使用场景是编译一次 struct 后同时打包多个值。这使得编译的成本相对降低。

onlyice

onlyice
Gobs 大概是 go blobs (binary large object) 的缩写。它的特点：

* 可以把 Go struct 实例 encode 成一段二进制字节，也可以从一段字节中 decode 成一个 struct
* 这段字节是自描述的，它有 struct 的 scheme 信息，比如字段名和类型
* gob 处理的是 stream，意味着一段字节中可以是 **多个** struct 实例 encode 成的。它甚至可以不是同个类型的，只要 decode 的代码也使用相应的 struct 结构来 decode

onlyice

https://golang.org/

4/27/2021 gob - The Go Programming Language

https://golang.org/pkg/encoding/gob/ 2/9

It may also be received into any of these:

struct { A, B int } // the same
struct { B, A int } // ordering doesn't matter; matching is by name
struct { A, B, C int } // extra field (C) ignored
struct { B int } // missing field (A) ignored; data will be dropped
struct { B, C int } // missing field (A) ignored; extra field (C) ignored.

Attempting to receive into these types will draw a decode error:

struct { A int; B uint } // change of signedness for B
struct { A int; B float } // change of type for B
struct { } // no field names in common
struct { C, D int } // no field names in common

Integers are transmitted two ways: arbitrary precision signed integers or arbitrary precision unsigned
integers. There is no int8, int16 etc. discrimination in the gob format; there are only signed and
unsigned integers. As described below, the transmitter sends the value in a variable-length encoding;
the receiver accepts the value and stores it in the destination variable. Floating-point numbers are
always sent using IEEE-754 64-bit precision (see below).

Signed integers may be received into any signed integer variable: int, int16, etc.; unsigned integers
may be received into any unsigned integer variable; and �oating point values may be received into any
�oating point variable. However, the destination variable must be able to represent the value or the
decode operation will fail.

Structs, arrays and slices are also supported. Structs encode and decode only exported �elds. Strings
and arrays of bytes are supported with a special, e�cient representation (see below). When a slice is
decoded, if the existing slice has capacity the slice will be extended in place; if not, a new array is
allocated. Regardless, the length of the resulting slice reports the number of elements decoded.

In general, if allocation is required, the decoder will allocate memory. If not, it will update the
destination variables with values read from the stream. It does not initialize them �rst, so if the
destination is a compound value such as a map, struct, or slice, the decoded values will be merged
elementwise into the existing variables.

Functions and channels will not be sent in a gob. Attempting to encode such a value at the top level
will fail. A struct �eld of chan or func type is treated exactly like an unexported �eld and is ignored.

Gob can encode a value of any type implementing the GobEncoder or encoding.BinaryMarshaler
interfaces by calling the corresponding method, in that order of preference.

Gob can decode a value of any type implementing the GobDecoder or encoding.BinaryUnmarshaler
interfaces by calling the corresponding method, again in that order of preference.

Encoding Details

This section documents the encoding, details that are not important for most users. Details are
presented bottom-up.

An unsigned integer is sent one of two ways. If it is less than 128, it is sent as a byte with that value.
Otherwise it is sent as a minimal-length big-endian (high byte �rst) byte stream holding the value,
preceded by one byte holding the byte count, negated. Thus 0 is transmitted as (00), 7 is transmitted
as (07) and 256 is transmitted as (FE 01 00).

A b l i d d ithi i d i t 0 f f l 1 f t

onlyice

onlyice

onlyice

onlyice
这段没有看。不太关心这个细节。

onlyice
Highlight
gob 编码中不界定 integer 的长度，integer 编码后的格式是变长的，视需要的字节数而定。

浮点数总是 IEEE-754 64 位浮点数。

4/27/2021 gob - The Go Programming Language

https://golang.org/pkg/encoding/gob/ 3/9

A boolean is encoded within an unsigned integer: 0 for false, 1 for true.

A signed integer, i, is encoded within an unsigned integer, u. Within u, bits 1 upward contain the value;
bit 0 says whether they should be complemented upon receipt. The encode algorithm looks like this:

var u uint
if i < 0 {
 u = (^uint(i) << 1) | 1 // complement i, bit 0 is 1
} else {
 u = (uint(i) << 1) // do not complement i, bit 0 is 0
}
encodeUnsigned(u)

The low bit is therefore analogous to a sign bit, but making it the complement bit instead guarantees
that the largest negative integer is not a special case. For example, -129=^128=(^256>>1) encodes as
(FE 01 01).

Floating-point numbers are always sent as a representation of a �oat64 value. That value is converted
to a uint64 using math.Float64bits. The uint64 is then byte-reversed and sent as a regular unsigned
integer. The byte-reversal means the exponent and high-precision part of the mantissa go �rst. Since
the low bits are often zero, this can save encoding bytes. For instance, 17.0 is encoded in only three
bytes (FE 31 40).

Strings and slices of bytes are sent as an unsigned count followed by that many uninterpreted bytes
of the value.

All other slices and arrays are sent as an unsigned count followed by that many elements using the
standard gob encoding for their type, recursively.

Maps are sent as an unsigned count followed by that many key, element pairs. Empty but non-nil
maps are sent, so if the receiver has not allocated one already, one will always be allocated on receipt
unless the transmitted map is nil and not at the top level.

In slices and arrays, as well as maps, all elements, even zero-valued elements, are transmitted, even if
all the elements are zero.

Structs are sent as a sequence of (�eld number, �eld value) pairs. The �eld value is sent using the
standard gob encoding for its type, recursively. If a �eld has the zero value for its type (except for
arrays; see above), it is omitted from the transmission. The �eld number is de�ned by the type of the
encoded struct: the �rst �eld of the encoded type is �eld 0, the second is �eld 1, etc. When encoding a
value, the �eld numbers are delta encoded for e�ciency and the �elds are always sent in order of
increasing �eld number; the deltas are therefore unsigned. The initialization for the delta encoding
sets the �eld number to -1, so an unsigned integer �eld 0 with value 7 is transmitted as unsigned delta
= 1, unsigned value = 7 or (01 07). Finally, after all the �elds have been sent a terminating mark
denotes the end of the struct. That mark is a delta=0 value, which has representation (00).

Interface types are not checked for compatibility; all interface types are treated, for transmission, as
members of a single "interface" type, analogous to int or []byte - in effect they're all treated as
interface{}. Interface values are transmitted as a string identifying the concrete type being sent (a
name that must be pre-de�ned by calling Register), followed by a byte count of the length of the
following data (so the value can be skipped if it cannot be stored), followed by the usual encoding of
concrete (dynamic) value stored in the interface value. (A nil interface value is identi�ed by the empty
string and transmits no value.) Upon receipt, the decoder veri�es that the unpacked concrete item
satis�es the interface of the receiving variable.

If a value is passed to Encode and the type is not a struct (or pointer to struct, etc.), for simplicity of
processing it is represented as a struct of one �eld. The only visible effect of this is to encode a zero
byte after the value, just as after the last �eld of an encoded struct, so that the decode algorithm
knows when the top-level value is complete.

4/27/2021 gob - The Go Programming Language

https://golang.org/pkg/encoding/gob/ 4/9

p p

The representation of types is described below. When a type is de�ned on a given connection
between an Encoder and Decoder, it is assigned a signed integer type id. When Encoder.Encode(v) is
called, it makes sure there is an id assigned for the type of v and all its elements and then it sends the

pair (typeid, encoded-v) where typeid is the type id of the encoded type of v and encoded-v is the gob
encoding of the value v.

To de�ne a type, the encoder chooses an unused, positive type id and sends the pair (-type id,
encoded-type) where encoded-type is the gob encoding of a wireType description, constructed from
these types:

type wireType struct {
 ArrayT *ArrayType
 SliceT *SliceType
 StructT *StructType
 MapT *MapType
 GobEncoderT *gobEncoderType
 BinaryMarshalerT *gobEncoderType
 TextMarshalerT *gobEncoderType

}
type arrayType struct {
 CommonType
 Elem typeId
 Len int
}
type CommonType struct {
 Name string // the name of the struct type
 Id int // the id of the type, repeated so it's inside the type
}
type sliceType struct {
 CommonType
 Elem typeId
}
type structType struct {
 CommonType
 Field []*fieldType // the fields of the struct.
}
type fieldType struct {
 Name string // the name of the field.
 Id int // the type id of the field, which must be already defined
}
type mapType struct {
 CommonType
 Key typeId
 Elem typeId
}
type gobEncoderType struct {
 CommonType
}

If there are nested type ids, the types for all inner type ids must be de�ned before the top-level type id
is used to describe an encoded-v.

For simplicity in setup, the connection is de�ned to understand these types a priori, as well as the
basic gob types int uint etc Their ids are:

4/27/2021 gob - The Go Programming Language

https://golang.org/pkg/encoding/gob/ 5/9

basic gob types int, uint, etc. Their ids are:

bool 1
int 2
uint 3
float 4
[]byte 5
string 6
complex 7
interface 8
// gap for reserved ids.
WireType 16
ArrayType 17
CommonType 18
SliceType 19
StructType 20
FieldType 21
// 22 is slice of fieldType.
MapType 23

Finally, each message created by a call to Encode is preceded by an encoded unsigned integer count
of the number of bytes remaining in the message. After the initial type name, interface values are
wrapped the same way; in effect, the interface value acts like a recursive invocation of Encode.

In summary, a gob stream looks like

(byteCount (-type id, encoding of a wireType)* (type id, encoding of a value))*

where * signi�es zero or more repetitions and the type id of a value must be prede�ned or be de�ned
before the value in the stream.

Compatibility: Any future changes to the package will endeavor to maintain compatibility with streams
encoded using previous versions. That is, any released version of this package should be able to
decode data written with any previously released version, subject to issues such as security �xes. See
the Go compatibility document for background: https://golang.org/doc/go1compat

See "Gobs of data" for a design discussion of the gob wire format: https://blog.golang.org/gobs-of-
data

▹ Example (Basic)

▹ Example (EncodeDecode)

▹ Example (Interface)

Index ▾

func Register(value interface{})
func RegisterName(name string, value interface{})
type CommonType
type Decoder
 func NewDecoder(r io.Reader) *Decoder
 func (dec *Decoder) Decode(e interface{}) error
 func (dec *Decoder) DecodeValue(v re�ect.Value) error

https://golang.org/doc/go1compat
https://blog.golang.org/gobs-of-data

4/27/2021 gob - The Go Programming Language

https://golang.org/pkg/encoding/gob/ 6/9

Examples (Expand All)

() ()
type Encoder
 func NewEncoder(w io.Writer) *Encoder
 func (enc *Encoder) Encode(e interface{}) error
 func (enc *Encoder) EncodeValue(value re�ect.Value) error

type GobDecoder
type GobEncoder

Package (Basic)
Package (EncodeDecode)
Package (Interface)

Package �les

dec_helpers.go decode.go decoder.go doc.go enc_helpers.go encode.go encoder.go error.go type.go

func Register

func Register(value interface{})

Register records a type, identi�ed by a value for that type, under its internal type name. That name will
identify the concrete type of a value sent or received as an interface variable. Only types that will be
transferred as implementations of interface values need to be registered. Expecting to be used only
during initialization, it panics if the mapping between types and names is not a bijection.

func RegisterName

func RegisterName(name string, value interface{})

RegisterName is like Register but uses the provided name rather than the type's default.

type CommonType

CommonType holds elements of all types. It is a historical artifact, kept for binary compatibility and
exported only for the bene�t of the package's encoding of type descriptors. It is not intended for direct
use by clients.

type CommonType struct {
 Name string
 Id typeId
}

type Decoder

A Decoder manages the receipt of type and data information read from the remote side of a
connection It is safe for concurrent use by multiple goroutines

https://golang.org/src/encoding/gob/dec_helpers.go
https://golang.org/src/encoding/gob/decode.go
https://golang.org/src/encoding/gob/decoder.go
https://golang.org/src/encoding/gob/doc.go
https://golang.org/src/encoding/gob/enc_helpers.go
https://golang.org/src/encoding/gob/encode.go
https://golang.org/src/encoding/gob/encoder.go
https://golang.org/src/encoding/gob/error.go
https://golang.org/src/encoding/gob/type.go
https://golang.org/src/encoding/gob/type.go?s=25272:25304#L826
https://golang.org/src/encoding/gob/type.go?s=24034:24083#L797
https://golang.org/pkg/builtin/#string
https://golang.org/src/encoding/gob/type.go?s=6947:6999#L206
https://golang.org/pkg/builtin/#string
https://golang.org/src/encoding/gob/decoder.go?s=798:1581#L17

4/27/2021 gob - The Go Programming Language

https://golang.org/pkg/encoding/gob/ 7/9

connection. It is safe for concurrent use by multiple goroutines.

The Decoder does only basic sanity checking on decoded input sizes, and its limits are not
con�gurable. Take caution when decoding gob data from untrusted sources.

type Decoder struct {
 // contains filtered or unexported fields
}

func NewDecoder

func NewDecoder(r io.Reader) *Decoder

NewDecoder returns a new decoder that reads from the io.Reader. If r does not also implement
io.ByteReader, it will be wrapped in a bu�o.Reader.

func (*Decoder) Decode

func (dec *Decoder) Decode(e interface{}) error

Decode reads the next value from the input stream and stores it in the data represented by the empty
interface value. If e is nil, the value will be discarded. Otherwise, the value underlying e must be a
pointer to the correct type for the next data item received. If the input is at EOF, Decode returns io.EOF
and does not modify e.

func (*Decoder) DecodeValue

func (dec *Decoder) DecodeValue(v reflect.Value) error

DecodeValue reads the next value from the input stream. If v is the zero re�ect.Value (v.Kind() ==
Invalid), DecodeValue discards the value. Otherwise, it stores the value into v. In that case, v must
represent a non-nil pointer to data or be an assignable re�ect.Value (v.CanSet()) If the input is at EOF,
DecodeValue returns io.EOF and does not modify v.

type Encoder

An Encoder manages the transmission of type and data information to the other side of a connection.
It is safe for concurrent use by multiple goroutines.

type Encoder struct {
 // contains filtered or unexported fields
}

func NewEncoder

func NewEncoder(w io.Writer) *Encoder

NewEncoder returns a new encoder that will transmit on the io.Writer.

https://golang.org/src/encoding/gob/decoder.go?s=1738:1775#L32
https://golang.org/pkg/io/
https://golang.org/pkg/io/#Reader
https://golang.org/src/encoding/gob/decoder.go?s=5354:5401#L167
https://golang.org/pkg/builtin/#error
https://golang.org/src/encoding/gob/decoder.go?s=6157:6211#L187
https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/#Value
https://golang.org/pkg/builtin/#error
https://golang.org/src/encoding/gob/encoder.go?s=384:854#L7
https://golang.org/src/encoding/gob/encoder.go?s=1229:1266#L24
https://golang.org/pkg/io/
https://golang.org/pkg/io/#Writer

4/27/2021 gob - The Go Programming Language

https://golang.org/pkg/encoding/gob/ 8/9

func (*Encoder) Encode

func (enc *Encoder) Encode(e interface{}) error

Encode transmits the data item represented by the empty interface value, guaranteeing that all
necessary type information has been transmitted �rst. Passing a nil pointer to Encoder will panic, as
they cannot be transmitted by gob.

func (*Encoder) EncodeValue

func (enc *Encoder) EncodeValue(value reflect.Value) error

EncodeValue transmits the data item represented by the re�ection value, guaranteeing that all
necessary type information has been transmitted �rst. Passing a nil pointer to EncodeValue will panic,
as they cannot be transmitted by gob.

type GobDecoder

GobDecoder is the interface describing data that provides its own routine for decoding transmitted
values sent by a GobEncoder.

type GobDecoder interface {
 // GobDecode overwrites the receiver, which must be a pointer,
 // with the value represented by the byte slice, which was written
 // by GobEncode, usually for the same concrete type.
 GobDecode([]byte) error
}

type GobEncoder

GobEncoder is the interface describing data that provides its own representation for encoding values
for transmission to a GobDecoder. A type that implements GobEncoder and GobDecoder has
complete control over the representation of its data and may therefore contain things such as private
�elds, channels, and functions, which are not usually transmissible in gob streams.

Note: Since gobs can be stored permanently, it is good design to guarantee the encoding used by a
GobEncoder is stable as the software evolves. For instance, it might make sense for GobEncode to
include a version number in the encoding.

type GobEncoder interface {
 // GobEncode returns a byte slice representing the encoding of the
 // receiver for transmission to a GobDecoder, usually of the same
 // concrete type.
 GobEncode() ([]byte, error)
}

https://golang.org/src/encoding/gob/encoder.go?s=5488:5535#L165
https://golang.org/pkg/builtin/#error
https://golang.org/src/encoding/gob/encoder.go?s=6953:7011#L208
https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/#Value
https://golang.org/pkg/builtin/#error
https://golang.org/src/encoding/gob/type.go?s=23576:23816#L783
https://golang.org/pkg/builtin/#byte
https://golang.org/pkg/builtin/#error
https://golang.org/src/encoding/gob/type.go?s=23228:23440#L774
https://golang.org/pkg/builtin/#byte
https://golang.org/pkg/builtin/#error

4/27/2021 gob - The Go Programming Language

https://golang.org/pkg/encoding/gob/ 9/9

Copyright

Terms of Service

Privacy Policy

Report a website issue

Suppo�ed by Google

https://golang.org/doc/copyright.html
https://golang.org/doc/tos.html
http://www.google.com/intl/en/policies/privacy/
http://golang.org/issues/new?title=x/website:
https://google.com/

