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Me
•Software developer
•C, Java, Perl, PHP, Ruby
•SQL maven
•MySQL Consultant at Percona
•Author of SQL Antipatterns: 

Avoiding the Pitfalls of 
Database Programming
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Problem

•Store & query hierarchical data
- Categories/subcategories
- Bill of materials
- Threaded discussions
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Example: Bug Report 
Comments

(1) Fran: 
What’s the cause 
of this bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked for 
that.

(4) Kukla: 
We need to check 
valid input.

(5) Ollie: 
Yes, that’s a bug.

(6) Fran: 
Yes, please add a 
check.

(7) Kukla: 
That fixed it.
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Solutions

•Adjacency list
•Path enumeration
•Nested sets
•Closure table
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Adjacency List
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Adjacency List

•Naive solution nearly everyone uses  
•Each entry knows its immediate parent 

comment_id parent_id author comment

1 NULL Fran What’s the cause of this bug?

2 1 Ollie I think it’s a null pointer.

3 2 Fran No, I checked for that.

4 1 Kukla We need to check valid input.

5 4 Ollie Yes, that’s a bug.

6 4 Fran Yes, please add a check

7 6 Kukla That fixed it.
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Insert a New Node

INSERT INTO Comments (parent_id, author, comment) 
VALUES (5, ‘Fran’, ‘I agree!’);

(1) Fran: 
What’s the cause of 
this bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked for 
that.

(4) Kukla: 
We need to check 
valid input.

(5) Ollie: 
Yes, that’s a bug.

(6) Fran: 
Yes, please add a 
check.

(7) Kukla: 
That fixed it.
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Insert a New Node

INSERT INTO Comments (parent_id, author, comment) 
VALUES (5, ‘Fran’, ‘I agree!’);

(1) Fran: 
What’s the cause of 
this bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked for 
that.

(4) Kukla: 
We need to check 
valid input.

(5) Ollie: 
Yes, that’s a bug.

(6) Fran: 
Yes, please add a 
check.

(7) Kukla: 
That fixed it.

(8) Fran: 
I agree!
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Move a Node or Subtree

UPDATE Comments SET parent_id = 3 
WHERE comment_id = 6;

(1) Fran: 
What’s the cause of 
this bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked for 
that.

(4) Kukla: 
We need to check 
valid input.

(5) Ollie: 
Yes, that’s a bug.

(6) Fran: 
Yes, please add a 
check.

(7) Kukla: 
That fixed it.
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Move a Node or Subtree

UPDATE Comments SET parent_id = 3 
WHERE comment_id = 6;

(1) Fran: 
What’s the cause of 
this bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked for 
that.

(4) Kukla: 
We need to check 
valid input.

(5) Ollie: 
Yes, that’s a bug.
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Move a Node or Subtree

UPDATE Comments SET parent_id = 3 
WHERE comment_id = 6;

(1) Fran: 
What’s the cause of 
this bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked for 
that.

(4) Kukla: 
We need to check 
valid input.

(5) Ollie: 
Yes, that’s a bug.
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Move a Node or Subtree

UPDATE Comments SET parent_id = 3 
WHERE comment_id = 6;

(1) Fran: 
What’s the cause of 
this bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked for 
that.

(4) Kukla: 
We need to check 
valid input.

(5) Ollie: 
Yes, that’s a bug.

(6) Fran: 
Yes, please add a 
check.

(7) Kukla: 
That fixed it.
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Query Immediate Child/Parent

•Query a node’s  children:
SELECT * FROM Comments c1

LEFT JOIN Comments c2 
  ON (c2.parent_id = c1.comment_id);

•Query a node’s parent:
SELECT * FROM Comments c1

JOIN Comments c2 
  ON (c1.parent_id = c2.comment_id);
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Can’t Handle Deep Trees
SELECT * FROM Comments c1

LEFT JOIN Comments c2 ON (c2.parent_id = c1.comment_id)
LEFT JOIN Comments c3 ON (c3.parent_id = c2.comment_id)
LEFT JOIN Comments c4 ON (c4.parent_id = c3.comment_id)
LEFT JOIN Comments c5 ON (c5.parent_id = c4.comment_id) 
LEFT JOIN Comments c6 ON (c6.parent_id = c5.comment_id)
LEFT JOIN Comments c7 ON (c7.parent_id = c6.comment_id)
LEFT JOIN Comments c8 ON (c8.parent_id = c7.comment_id)
LEFT JOIN Comments c9 ON (c9.parent_id = c8.comment_id)
LEFT JOIN Comments c10 ON (c10.parent_id = c9.comment_id)
. . .
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Can’t Handle Deep Trees
SELECT * FROM Comments c1

LEFT JOIN Comments c2 ON (c2.parent_id = c1.comment_id)
LEFT JOIN Comments c3 ON (c3.parent_id = c2.comment_id)
LEFT JOIN Comments c4 ON (c4.parent_id = c3.comment_id)
LEFT JOIN Comments c5 ON (c5.parent_id = c4.comment_id) 
LEFT JOIN Comments c6 ON (c6.parent_id = c5.comment_id)
LEFT JOIN Comments c7 ON (c7.parent_id = c6.comment_id)
LEFT JOIN Comments c8 ON (c8.parent_id = c7.comment_id)
LEFT JOIN Comments c9 ON (c9.parent_id = c8.comment_id)
LEFT JOIN Comments c10 ON (c10.parent_id = c9.comment_id)
. . .

it still doesn’t support
unlimited depth!
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SQL-99 recursive syntax
WITH [RECURSIVE] CommentTree

 (comment_id, bug_id, parent_id, author, comment, depth)
AS (
 SELECT *, 0 AS depth FROM Comments 
 WHERE parent_id IS NULL
  UNION ALL
 SELECT c.*, ct.depth+1 AS depth FROM CommentTree ct
 JOIN Comments c ON (ct.comment_id = c.parent_id)
)
SELECT * FROM CommentTree WHERE bug_id = 1234;

PostgreSQL, Oracle 11g, 
IBM DB2, Microsoft SQL 
Server, Apache Derby✓ ✗ MySQL, SQLite, Informix, 

Firebird,etc.
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Path Enumeration
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Path Enumeration

•Store chain of ancestors in each node

comment_id path author comment

1 1/ Fran What’s the cause of this bug?

2 1/2/ Ollie I think it’s a null pointer.

3 1/2/3/ Fran No, I checked for that.

4 1/4/ Kukla We need to check valid input.

5 1/4/5/ Ollie Yes, that’s a bug.

6 1/4/6/ Fran Yes, please add a check

7 1/4/6/7/ Kukla That fixed it.
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Path Enumeration

•Store chain of ancestors in each node

comment_id path author comment

1 1/ Fran What’s the cause of this bug?

2 1/2/ Ollie I think it’s a null pointer.

3 1/2/3/ Fran No, I checked for that.

4 1/4/ Kukla We need to check valid input.

5 1/4/5/ Ollie Yes, that’s a bug.

6 1/4/6/ Fran Yes, please add a check

7 1/4/6/7/ Kukla That fixed it.

good for 
breadcrumbs
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Query Ancestors and Subtrees

•Query ancestors of comment #7:
SELECT * FROM Comments

WHERE ‘1/4/6/7/’ LIKE path || ‘%’;

•Query descendants of comment #4:
SELECT * FROM Comments

WHERE path LIKE ‘1/4/%’;
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Add a New Child of #7
INSERT INTO Comments (author, comment) 

VALUES (‘Ollie’, ‘Good job!’);
SELECT path FROM Comments

WHERE comment_id = 7;
UPDATE Comments 

SET path = $parent_path || LAST_INSERT_ID() || ‘/’ 
WHERE comment_id = LAST_INSERT_ID();



www.percona.com

Nested Sets
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Nested Sets

•Each comment encodes its descendants
using two numbers:
- A comment’s left number is less than all numbers 

used by the comment’s descendants.
- A comment’s right number is greater than all 

numbers used by the comment’s descendants.
- A comment’s numbers are between all 

numbers used by the comment’s ancestors.
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What Does This Look Like?

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.



www.percona.com

What Does This Look Like?

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11
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What Does This Look Like?

comment_id nsleft nsright author comment

1 1 14 Fran What’s the cause of this bug?

2 2 5 Ollie I think it’s a null pointer.

3 3 4 Fran No, I checked for that.

4 6 13 Kukla We need to check valid input.

5 7 8 Ollie Yes, that’s a bug.

6 9 12 Fran Yes, please add a check

7 10 11 Kukla That fixed it.
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What Does This Look Like?

comment_id nsleft nsright author comment

1 1 14 Fran What’s the cause of this bug?

2 2 5 Ollie I think it’s a null pointer.

3 3 4 Fran No, I checked for that.

4 6 13 Kukla We need to check valid input.

5 7 8 Ollie Yes, that’s a bug.

6 9 12 Fran Yes, please add a check

7 10 11 Kukla That fixed it.

these are not
foreign keys
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Query Ancestors of #7

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

ancestors

child
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Query Ancestors of #7

SELECT * FROM Comments child 
JOIN Comments ancestor ON child.nsleft
 BETWEEN ancestor.nsleft AND ancestor.nsright
WHERE child.comment_id = 7;
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Query Subtree Under #4

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

parent

descendants
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Query Subtree Under #4

SELECT * FROM Comments parent 
JOIN Comments descendant ON descendant.nsleft 
 BETWEEN parent.nsleft AND parent.nsright 
WHERE parent.comment_id = 4;
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Insert New Child of #5

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11
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Insert New Child of #5

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

10 11

12 13

14

15

16
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Insert New Child of #5

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

(8) Fran: 
I agree!

8 9

10 11

12 13

14

15

16
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Insert New Child of #5
UPDATE Comments 

SET nsleft = CASE WHEN nsleft >= 8 THEN nsleft+2 
 ELSE nsleft END,
 nsright = nsright+2 
WHERE nsright >= 7;

INSERT INTO Comments (nsleft, nsright, author, comment) 
  VALUES (8, 9, 'Fran', 'I agree!');

•Recalculate left values for all nodes to the right of 
the new child.  Recalculate right values for all 
nodes above and to the right.  
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Query Immediate Parent of #6

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11
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Query Immediate Parent of #6

•Parent of #6 is an ancestor who has no 
descendant who is also an ancestor of #6.

SELECT parent.* FROM Comments AS c 
JOIN Comments AS parent 
  ON (c.nsleft BETWEEN parent.nsleft AND parent.nsright) 
LEFT OUTER JOIN Comments AS in_between 
  ON (c.nsleft BETWEEN in_between.nsleft AND in_between.nsright 
    AND in_between.nsleft BETWEEN parent.nsleft AND parent.nsright) 
WHERE c.comment_id = 6 AND in_between.comment_id IS NULL;
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Query Immediate Parent of #6

•Parent of #6 is an ancestor who has no 
descendant who is also an ancestor of #6.

SELECT parent.* FROM Comments AS c 
JOIN Comments AS parent 
  ON (c.nsleft BETWEEN parent.nsleft AND parent.nsright) 
LEFT OUTER JOIN Comments AS in_between 
  ON (c.nsleft BETWEEN in_between.nsleft AND in_between.nsright 
    AND in_between.nsleft BETWEEN parent.nsleft AND parent.nsright) 
WHERE c.comment_id = 6 AND in_between.comment_id IS NULL;

querying immediate child 
is a similar problem
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Closure Table
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Closure Table

CREATE TABLE TreePaths (
 ancestor   INT NOT NULL,
 descendant  INT NOT NULL,
 PRIMARY KEY (ancestor, descendant),
 FOREIGN KEY(ancestor) 
  REFERENCES Comments(comment_id),
 FOREIGN KEY(descendant) 
  REFERENCES Comments(comment_id)
);
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Closure Table

•Many-to-many table
•Stores every path from each node 

to each of its descendants
•A node even connects to itself
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Closure Table illustration

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.
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Closure Table illustration

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.
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Closure Table illustration

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.
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Closure Table illustration

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.
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What Does This Look Like?

comment_id author comment

1 Fran What’s the cause of this 
bug?

2 Ollie I think it’s a null pointer.

3 Fran No, I checked for that.

4 Kukla We need to check valid 
input.

5 Ollie Yes, that’s a bug.

6 Fran Yes, please add a check

7 Kukla That fixed it.

ancestor descendant
1 1

1 2

1 3

1 4

1 5

1 6

1 7

2 2

2 3

3 3

4 4

4 5

4 6

4 7

5 5

6 6

6 7

7 7

requires O(n²) rows
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What Does This Look Like?

comment_id author comment

1 Fran What’s the cause of this 
bug?

2 Ollie I think it’s a null pointer.

3 Fran No, I checked for that.

4 Kukla We need to check valid 
input.

5 Ollie Yes, that’s a bug.

6 Fran Yes, please add a check

7 Kukla That fixed it.

ancestor descendant
1 1

1 2

1 3

1 4

1 5

1 6

1 7

2 2

2 3

3 3

4 4

4 5

4 6

4 7

5 5

6 6

6 7

7 7

requires O(n²) rows

(but far fewer in practice)
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Query Descendants of #4

SELECT c.* FROM Comments c 
JOIN TreePaths t 
  ON (c.comment_id = t.descendant)
WHERE t.ancestor = 4;
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Paths Starting from #4

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.
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Query Ancestors of #6

SELECT c.* FROM Comments c 
JOIN TreePaths t 
  ON (c.comment_id = t.ancestor)
WHERE t.descendant = 6;
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Paths Terminating at #6

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.
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Insert New Child of #5

INSERT INTO Comments 
VALUES (8, ‘Fran’, ‘I agree!’);

INSERT INTO TreePaths (ancestor, descendant)
SELECT ancestor, 8 FROM TreePaths
WHERE descendant = 5
UNION ALL SELECT 8, 8; 
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Copy Paths from Parent

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.

(8) Fran: 
I agree!
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Copy Paths from Parent

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.

(8) Fran: 
I agree!
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Copy Paths from Parent

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.

(8) Fran: 
I agree!
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Delete Child #7

 DELETE FROM TreePaths
 WHERE descendant = 7;
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Delete Paths Terminating at #7

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.
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Delete Paths Terminating at #7

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.
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Delete Paths Terminating at #7

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.
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Delete Paths Terminating at #7

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.



www.percona.com

Delete Subtree Under #4

 DELETE FROM TreePaths 
 WHERE descendant IN 
  (SELECT descendant FROM TreePaths
   WHERE ancestor = 4);
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Delete Any Paths Under #4

(1) Fran: 
What’s the 
cause of this 
bug?

(2) Ollie: 
I think it’s a null 
pointer.

(3) Fran: 
No, I checked 
for that.

(4) Kukla: 
We need to 
check valid 
input.

(5) Ollie: 
Yes, that’s a 
bug.

(6) Fran: 
Yes, please add 
a check.

(7) Kukla: 
That fixed it.
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Path Length
•Add a length column
•MAX(length) is depth of tree
•Makes it easier to query 

immediate parent or child:
SELECT c.* 

FROM Comments c
JOIN TreePaths t
  ON (c.comment_id = t.descendant)
WHERE t.ancestor = 4 
  AND t.length = 1;

ancestor descendant length
1 1 0

1 2 1

1 3 2

1 4 1

1 5 2

1 6 2

1 7 3

2 2 0

2 3 1

3 3 0

4 4 0

4 5 1

4 6 1

4 7 2

5 5 0

6 6 0

6 7 1

7 7 0
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Choosing the Right Design

Design Tables Query 
Child

Query 
Subtree

Delete 
Node

Insert 
Node

Move 
Subtree

Referential 
Integrity

Adjacency 
List

1 Easy Hard Easy Easy Easy Yes

Path 
Enumeration

1 Hard Easy Easy Easy Easy No

Nested Sets 1 Hard Easy Hard Hard Hard No

Closure 
Table

2 Easy Easy Easy Easy Easy Yes
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PHP Demo 
of Closure Table
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Hierarchical Test Data

• Integrated Taxonomic Information System
- http://itis.gov/
- Free authoritative taxonomic information on plants, 

animals, fungi, microbes 
- 518,756 scientific names (as of Feb 2011)
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California Poppy
Kingdom: Plantae
Division:  Tracheobionta
Class:  Magnoliophyta
Order:  Magnoliopsida
unranked: Magnoliidae
unranked: Papaverales
Family:  Papaveraceae
Genus:  Eschscholzia
Species:  Eschscholzia californica
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California Poppy
Kingdom: Plantae
Division:  Tracheobionta
Class:  Magnoliophyta
Order:  Magnoliopsida
unranked: Magnoliidae
unranked: Papaverales
Family:  Papaveraceae
Genus:  Eschscholzia
Species:  Eschscholzia californica

id=18956
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California Poppy: ITIS Entry

SELECT * FROM Hierarchy 
WHERE hierarchy_string LIKE ‘%-18956’;

hierarchy_string
202422-564824-18061-18063-18064-18879-18880-18954-18956
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California Poppy: ITIS Entry

SELECT * FROM Hierarchy 
WHERE hierarchy_string LIKE ‘%-18956’;

hierarchy_string
202422-564824-18061-18063-18064-18879-18880-18954-18956

ITIS data uses 
path enumeration

...but I converted 
it to closure table



www.percona.com

Hierarchical Data Classes
abstract class ZendX_Db_Table_TreeTable 

 extends Zend_Db_Table_Abstract
{
 public function fetchTreeByRoot($rootId, $expand)
 public function fetchBreadcrumbs($leafId)
}
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Hierarchical Data Classes
class ZendX_Db_Table_Row_TreeRow 

 extends Zend_Db_Table_Row_Abstract
{
 public function addChildRow($childRow)
 public function getChildren()
}

class ZendX_Db_Table_Rowset_TreeRowset
 extends Zend_Db_Table_Rowset_Abstract
{
 public function append($row)
}
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Using TreeTable
class ItisTable extends ZendX_Db_Table_TreeTable

{
 protected $_name = “longnames”;
 protected $_closureName = “treepaths”;
}

$itis = new ItisTable();
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Breadcrumbs
$breadcrumbs = $itis->fetchBreadcrumbs(18956);
foreach ($breadcrumbs as $crumb) {

 print $crumb->completename . “ > ”;
} 

Plantae > Tracheobionta > Magnoliophyta > Magnoliopsida > 
Magnoliidae > Papaverales > Papaveraceae > Eschscholzia > 
Eschscholzia californica >
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Breadcrumbs SQL

SELECT a.* FROM longnames AS a 
INNER JOIN treepaths AS c ON a.tsn = c.a 
WHERE (c.d = 18956) 
ORDER BY c.l DESC
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How Does it Perform?

•Query profile = 0.0006 sec
•MySQL EXPLAIN:

table type key ref rows extra

c ref tree_dl const 9 Using where; Using index

a eq_ref primary c.a 1
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Dump Tree
$tree = $itis->fetchTreeByRoot(18880);  // Papaveraceae
print_tree($tree);

function print_tree($tree, $prefix = ‘’)
{
  print “{$prefix} {$tree->completename}\n”;
  foreach ($tree->getChildren() as $child) {
    print_tree($child, “{$prefix}   ”);
  }
}
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Dump Tree Result
 Papaveraceae
    Platystigma
       Platystigma linearis
    Glaucium
       Glaucium corniculatum
       Glaucium flavum
    Chelidonium
       Chelidonium majus
    Bocconia
       Bocconia frutescens
    Stylophorum
       Stylophorum diphyllum
    Stylomecon
       Stylomecon heterophylla
    Canbya
       Canbya aurea
       Canbya candida
    Chlidonium
       Chlidonium majus
    

Romneya
       Romneya coulteri
       Romneya trichocalyx
    Dendromecon
       Dendromecon harfordii
       Dendromecon rigida
    Eschscholzia
       Eschscholzia californica
       Eschscholzia glyptosperma
       Eschscholzia hypecoides
       Eschscholzia lemmonii
       Eschscholzia lobbii
       Eschscholzia minutiflora
       Eschscholzia parishii
       Eschscholzia ramosa
       Eschscholzia rhombipetala
       Eschscholzia caespitosa
etc...
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Dump Tree SQL

SELECT d.*, p.a AS _parent 
FROM treepaths AS c
INNER JOIN longnames AS d ON c.d = d.tsn
LEFT JOIN treepaths AS p ON p.d = d.tsn 
 AND p.a IN (202422, 564824, 18053, 18020) 
 AND p.l = 1 
WHERE (c.a = 202422) 
 AND (p.a IS NOT NULL OR d.tsn = 202422) 
ORDER BY c.l, d.completename;
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Dump Tree SQL

SELECT d.*, p.a AS _parent 
FROM treepaths AS c
INNER JOIN longnames AS d ON c.d = d.tsn
LEFT JOIN treepaths AS p ON p.d = d.tsn 
 AND p.a IN (202422, 564824, 18053, 18020) 
 AND p.l = 1 
WHERE (c.a = 202422) 
 AND (p.a IS NOT NULL OR d.tsn = 202422) 
ORDER BY c.l, d.completename;

show children 
of these nodes
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How Does it Perform?

•Query profile = 0.20 sec on Macbook Pro
•MySQL EXPLAIN:

table type key ref rows extra

c ref tree_adl const 114240 Using index; Using 
temporary; Using filesort

d eq_ref primary c.d 1

p ref tree_dl c.d, 
const

1 Using where; Using index
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SHOW CREATE TABLE
CREATE TABLE `treepaths` (

  `a` int(11) NOT NULL DEFAULT '0',
  `d` int(11) NOT NULL DEFAULT '0',
  `l` tinyint(3) unsigned NOT NULL DEFAULT '0',
  PRIMARY KEY (`a`,`d`),
  KEY `tree_adl` (`a`,`d`,`l`),
  KEY `tree_dl` (`d`,`l`),
  CONSTRAINT FOREIGN KEY (`a`) 
 REFERENCES `longnames` (`tsn`),
  CONSTRAINT FOREIGN KEY (`d`) 
 REFERENCES `longnames` (`tsn`)
) ENGINE=InnoDB
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SHOW TABLE STATUS

Name: treepaths
Engine: InnoDB
Version: 10
Row_format: Compact
Rows: 4600439
Avg_row_length: 62
Data_length: 288276480
Max_data_length: 0
Index_length: 273137664
Data_free: 7340032
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Demo Time!
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SQL Antipatterns

http://www.pragprog.com/titles/bksqla/

http://www.pragprog.com/titles/bksqla/sql-antipatterns
http://www.pragprog.com/titles/bksqla/sql-antipatterns
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