
Models for Hierarchical Data
with SQL and PHP

 Bill Karwin, Percona Inc.

www.percona.com

Me
•Software developer
•C, Java, Perl, PHP, Ruby
•SQL maven
•MySQL Consultant at Percona
•Author of SQL Antipatterns:

Avoiding the Pitfalls of
Database Programming

www.percona.com

Problem

•Store & query hierarchical data
- Categories/subcategories
- Bill of materials
- Threaded discussions

www.percona.com

Example: Bug Report
Comments

(1) Fran:
What’s the cause
of this bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked for
that.

(4) Kukla:
We need to check
valid input.

(5) Ollie:
Yes, that’s a bug.

(6) Fran:
Yes, please add a
check.

(7) Kukla:
That fixed it.

www.percona.com

Solutions

•Adjacency list
•Path enumeration
•Nested sets
•Closure table

www.percona.com

Adjacency List

www.percona.com

Adjacency List

•Naive solution nearly everyone uses
•Each entry knows its immediate parent

comment_id parent_id author comment

1 NULL Fran What’s the cause of this bug?

2 1 Ollie I think it’s a null pointer.

3 2 Fran No, I checked for that.

4 1 Kukla We need to check valid input.

5 4 Ollie Yes, that’s a bug.

6 4 Fran Yes, please add a check

7 6 Kukla That fixed it.

www.percona.com

Insert a New Node

INSERT INTO Comments (parent_id, author, comment)
VALUES (5, ‘Fran’, ‘I agree!’);

(1) Fran:
What’s the cause of
this bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked for
that.

(4) Kukla:
We need to check
valid input.

(5) Ollie:
Yes, that’s a bug.

(6) Fran:
Yes, please add a
check.

(7) Kukla:
That fixed it.

www.percona.com

Insert a New Node

INSERT INTO Comments (parent_id, author, comment)
VALUES (5, ‘Fran’, ‘I agree!’);

(1) Fran:
What’s the cause of
this bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked for
that.

(4) Kukla:
We need to check
valid input.

(5) Ollie:
Yes, that’s a bug.

(6) Fran:
Yes, please add a
check.

(7) Kukla:
That fixed it.

(8) Fran:
I agree!

www.percona.com

Move a Node or Subtree

UPDATE Comments SET parent_id = 3
WHERE comment_id = 6;

(1) Fran:
What’s the cause of
this bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked for
that.

(4) Kukla:
We need to check
valid input.

(5) Ollie:
Yes, that’s a bug.

(6) Fran:
Yes, please add a
check.

(7) Kukla:
That fixed it.

www.percona.com

Move a Node or Subtree

UPDATE Comments SET parent_id = 3
WHERE comment_id = 6;

(1) Fran:
What’s the cause of
this bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked for
that.

(4) Kukla:
We need to check
valid input.

(5) Ollie:
Yes, that’s a bug.

www.percona.com

Move a Node or Subtree

UPDATE Comments SET parent_id = 3
WHERE comment_id = 6;

(1) Fran:
What’s the cause of
this bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked for
that.

(4) Kukla:
We need to check
valid input.

(5) Ollie:
Yes, that’s a bug.

www.percona.com

Move a Node or Subtree

UPDATE Comments SET parent_id = 3
WHERE comment_id = 6;

(1) Fran:
What’s the cause of
this bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked for
that.

(4) Kukla:
We need to check
valid input.

(5) Ollie:
Yes, that’s a bug.

(6) Fran:
Yes, please add a
check.

(7) Kukla:
That fixed it.

www.percona.com

Query Immediate Child/Parent

•Query a node’s children:
SELECT * FROM Comments c1

LEFT JOIN Comments c2
 ON (c2.parent_id = c1.comment_id);

•Query a node’s parent:
SELECT * FROM Comments c1

JOIN Comments c2
 ON (c1.parent_id = c2.comment_id);

www.percona.com

Can’t Handle Deep Trees
SELECT * FROM Comments c1

LEFT JOIN Comments c2 ON (c2.parent_id = c1.comment_id)
LEFT JOIN Comments c3 ON (c3.parent_id = c2.comment_id)
LEFT JOIN Comments c4 ON (c4.parent_id = c3.comment_id)
LEFT JOIN Comments c5 ON (c5.parent_id = c4.comment_id)
LEFT JOIN Comments c6 ON (c6.parent_id = c5.comment_id)
LEFT JOIN Comments c7 ON (c7.parent_id = c6.comment_id)
LEFT JOIN Comments c8 ON (c8.parent_id = c7.comment_id)
LEFT JOIN Comments c9 ON (c9.parent_id = c8.comment_id)
LEFT JOIN Comments c10 ON (c10.parent_id = c9.comment_id)
. . .

www.percona.com

Can’t Handle Deep Trees
SELECT * FROM Comments c1

LEFT JOIN Comments c2 ON (c2.parent_id = c1.comment_id)
LEFT JOIN Comments c3 ON (c3.parent_id = c2.comment_id)
LEFT JOIN Comments c4 ON (c4.parent_id = c3.comment_id)
LEFT JOIN Comments c5 ON (c5.parent_id = c4.comment_id)
LEFT JOIN Comments c6 ON (c6.parent_id = c5.comment_id)
LEFT JOIN Comments c7 ON (c7.parent_id = c6.comment_id)
LEFT JOIN Comments c8 ON (c8.parent_id = c7.comment_id)
LEFT JOIN Comments c9 ON (c9.parent_id = c8.comment_id)
LEFT JOIN Comments c10 ON (c10.parent_id = c9.comment_id)
. . .

it still doesn’t support
unlimited depth!

www.percona.com

SQL-99 recursive syntax
WITH [RECURSIVE] CommentTree

 (comment_id, bug_id, parent_id, author, comment, depth)
AS (
 SELECT *, 0 AS depth FROM Comments
 WHERE parent_id IS NULL
 UNION ALL
 SELECT c.*, ct.depth+1 AS depth FROM CommentTree ct
 JOIN Comments c ON (ct.comment_id = c.parent_id)
)
SELECT * FROM CommentTree WHERE bug_id = 1234;

PostgreSQL, Oracle 11g,
IBM DB2, Microsoft SQL
Server, Apache Derby✓ ✗ MySQL, SQLite, Informix,

Firebird,etc.

www.percona.com

Path Enumeration

www.percona.com

Path Enumeration

•Store chain of ancestors in each node

comment_id path author comment

1 1/ Fran What’s the cause of this bug?

2 1/2/ Ollie I think it’s a null pointer.

3 1/2/3/ Fran No, I checked for that.

4 1/4/ Kukla We need to check valid input.

5 1/4/5/ Ollie Yes, that’s a bug.

6 1/4/6/ Fran Yes, please add a check

7 1/4/6/7/ Kukla That fixed it.

www.percona.com

Path Enumeration

•Store chain of ancestors in each node

comment_id path author comment

1 1/ Fran What’s the cause of this bug?

2 1/2/ Ollie I think it’s a null pointer.

3 1/2/3/ Fran No, I checked for that.

4 1/4/ Kukla We need to check valid input.

5 1/4/5/ Ollie Yes, that’s a bug.

6 1/4/6/ Fran Yes, please add a check

7 1/4/6/7/ Kukla That fixed it.

good for
breadcrumbs

www.percona.com

Query Ancestors and Subtrees

•Query ancestors of comment #7:
SELECT * FROM Comments

WHERE ‘1/4/6/7/’ LIKE path || ‘%’;

•Query descendants of comment #4:
SELECT * FROM Comments

WHERE path LIKE ‘1/4/%’;

www.percona.com

Add a New Child of #7
INSERT INTO Comments (author, comment)

VALUES (‘Ollie’, ‘Good job!’);
SELECT path FROM Comments

WHERE comment_id = 7;
UPDATE Comments

SET path = $parent_path || LAST_INSERT_ID() || ‘/’
WHERE comment_id = LAST_INSERT_ID();

www.percona.com

Nested Sets

www.percona.com

Nested Sets

•Each comment encodes its descendants
using two numbers:
- A comment’s left number is less than all numbers

used by the comment’s descendants.
- A comment’s right number is greater than all

numbers used by the comment’s descendants.
- A comment’s numbers are between all

numbers used by the comment’s ancestors.

www.percona.com

What Does This Look Like?

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

www.percona.com

What Does This Look Like?

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

www.percona.com

What Does This Look Like?

comment_id nsleft nsright author comment

1 1 14 Fran What’s the cause of this bug?

2 2 5 Ollie I think it’s a null pointer.

3 3 4 Fran No, I checked for that.

4 6 13 Kukla We need to check valid input.

5 7 8 Ollie Yes, that’s a bug.

6 9 12 Fran Yes, please add a check

7 10 11 Kukla That fixed it.

www.percona.com

What Does This Look Like?

comment_id nsleft nsright author comment

1 1 14 Fran What’s the cause of this bug?

2 2 5 Ollie I think it’s a null pointer.

3 3 4 Fran No, I checked for that.

4 6 13 Kukla We need to check valid input.

5 7 8 Ollie Yes, that’s a bug.

6 9 12 Fran Yes, please add a check

7 10 11 Kukla That fixed it.

these are not
foreign keys

www.percona.com

Query Ancestors of #7

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

ancestors

child

www.percona.com

Query Ancestors of #7

SELECT * FROM Comments child
JOIN Comments ancestor ON child.nsleft
 BETWEEN ancestor.nsleft AND ancestor.nsright
WHERE child.comment_id = 7;

www.percona.com

Query Subtree Under #4

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

parent

descendants

www.percona.com

Query Subtree Under #4

SELECT * FROM Comments parent
JOIN Comments descendant ON descendant.nsleft
 BETWEEN parent.nsleft AND parent.nsright
WHERE parent.comment_id = 4;

www.percona.com

Insert New Child of #5

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

www.percona.com

Insert New Child of #5

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

10 11

12 13

14

15

16

www.percona.com

Insert New Child of #5

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

(8) Fran:
I agree!

8 9

10 11

12 13

14

15

16

www.percona.com

Insert New Child of #5
UPDATE Comments

SET nsleft = CASE WHEN nsleft >= 8 THEN nsleft+2
 ELSE nsleft END,
 nsright = nsright+2
WHERE nsright >= 7;

INSERT INTO Comments (nsleft, nsright, author, comment)
 VALUES (8, 9, 'Fran', 'I agree!');

•Recalculate left values for all nodes to the right of
the new child. Recalculate right values for all
nodes above and to the right.

www.percona.com

Query Immediate Parent of #6

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

www.percona.com

Query Immediate Parent of #6

•Parent of #6 is an ancestor who has no
descendant who is also an ancestor of #6.

SELECT parent.* FROM Comments AS c
JOIN Comments AS parent
 ON (c.nsleft BETWEEN parent.nsleft AND parent.nsright)
LEFT OUTER JOIN Comments AS in_between
 ON (c.nsleft BETWEEN in_between.nsleft AND in_between.nsright
 AND in_between.nsleft BETWEEN parent.nsleft AND parent.nsright)
WHERE c.comment_id = 6 AND in_between.comment_id IS NULL;

www.percona.com

Query Immediate Parent of #6

•Parent of #6 is an ancestor who has no
descendant who is also an ancestor of #6.

SELECT parent.* FROM Comments AS c
JOIN Comments AS parent
 ON (c.nsleft BETWEEN parent.nsleft AND parent.nsright)
LEFT OUTER JOIN Comments AS in_between
 ON (c.nsleft BETWEEN in_between.nsleft AND in_between.nsright
 AND in_between.nsleft BETWEEN parent.nsleft AND parent.nsright)
WHERE c.comment_id = 6 AND in_between.comment_id IS NULL;

querying immediate child
is a similar problem

www.percona.com

Closure Table

www.percona.com

Closure Table

CREATE TABLE TreePaths (
 ancestor INT NOT NULL,
 descendant INT NOT NULL,
 PRIMARY KEY (ancestor, descendant),
 FOREIGN KEY(ancestor)
 REFERENCES Comments(comment_id),
 FOREIGN KEY(descendant)
 REFERENCES Comments(comment_id)
);

www.percona.com

Closure Table

•Many-to-many table
•Stores every path from each node

to each of its descendants
•A node even connects to itself

www.percona.com

Closure Table illustration

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

www.percona.com

Closure Table illustration

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

www.percona.com

Closure Table illustration

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

www.percona.com

Closure Table illustration

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

www.percona.com

What Does This Look Like?

comment_id author comment

1 Fran What’s the cause of this
bug?

2 Ollie I think it’s a null pointer.

3 Fran No, I checked for that.

4 Kukla We need to check valid
input.

5 Ollie Yes, that’s a bug.

6 Fran Yes, please add a check

7 Kukla That fixed it.

ancestor descendant
1 1

1 2

1 3

1 4

1 5

1 6

1 7

2 2

2 3

3 3

4 4

4 5

4 6

4 7

5 5

6 6

6 7

7 7

requires O(n²) rows

www.percona.com

What Does This Look Like?

comment_id author comment

1 Fran What’s the cause of this
bug?

2 Ollie I think it’s a null pointer.

3 Fran No, I checked for that.

4 Kukla We need to check valid
input.

5 Ollie Yes, that’s a bug.

6 Fran Yes, please add a check

7 Kukla That fixed it.

ancestor descendant
1 1

1 2

1 3

1 4

1 5

1 6

1 7

2 2

2 3

3 3

4 4

4 5

4 6

4 7

5 5

6 6

6 7

7 7

requires O(n²) rows

(but far fewer in practice)

www.percona.com

Query Descendants of #4

SELECT c.* FROM Comments c
JOIN TreePaths t
 ON (c.comment_id = t.descendant)
WHERE t.ancestor = 4;

www.percona.com

Paths Starting from #4

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

www.percona.com

Query Ancestors of #6

SELECT c.* FROM Comments c
JOIN TreePaths t
 ON (c.comment_id = t.ancestor)
WHERE t.descendant = 6;

www.percona.com

Paths Terminating at #6

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

www.percona.com

Insert New Child of #5

INSERT INTO Comments
VALUES (8, ‘Fran’, ‘I agree!’);

INSERT INTO TreePaths (ancestor, descendant)
SELECT ancestor, 8 FROM TreePaths
WHERE descendant = 5
UNION ALL SELECT 8, 8;

www.percona.com

Copy Paths from Parent

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

(8) Fran:
I agree!

www.percona.com

Copy Paths from Parent

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

(8) Fran:
I agree!

www.percona.com

Copy Paths from Parent

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

(8) Fran:
I agree!

www.percona.com

Delete Child #7

 DELETE FROM TreePaths
 WHERE descendant = 7;

www.percona.com

Delete Paths Terminating at #7

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

www.percona.com

Delete Paths Terminating at #7

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

www.percona.com

Delete Paths Terminating at #7

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

www.percona.com

Delete Paths Terminating at #7

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

www.percona.com

Delete Subtree Under #4

 DELETE FROM TreePaths
 WHERE descendant IN
 (SELECT descendant FROM TreePaths
 WHERE ancestor = 4);

www.percona.com

Delete Any Paths Under #4

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

www.percona.com

Delete Any Paths Under #4

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

www.percona.com

Delete Any Paths Under #4

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

www.percona.com

Delete Any Paths Under #4

(1) Fran:
What’s the
cause of this
bug?

(2) Ollie:
I think it’s a null
pointer.

(3) Fran:
No, I checked
for that.

(4) Kukla:
We need to
check valid
input.

(5) Ollie:
Yes, that’s a
bug.

(6) Fran:
Yes, please add
a check.

(7) Kukla:
That fixed it.

www.percona.com

Path Length
•Add a length column
•MAX(length) is depth of tree
•Makes it easier to query

immediate parent or child:
SELECT c.*

FROM Comments c
JOIN TreePaths t
 ON (c.comment_id = t.descendant)
WHERE t.ancestor = 4
 AND t.length = 1;

ancestor descendant length
1 1 0

1 2 1

1 3 2

1 4 1

1 5 2

1 6 2

1 7 3

2 2 0

2 3 1

3 3 0

4 4 0

4 5 1

4 6 1

4 7 2

5 5 0

6 6 0

6 7 1

7 7 0

www.percona.com

Path Length
•Add a length column
•MAX(length) is depth of tree
•Makes it easier to query

immediate parent or child:
SELECT c.*

FROM Comments c
JOIN TreePaths t
 ON (c.comment_id = t.descendant)
WHERE t.ancestor = 4
 AND t.length = 1;

ancestor descendant length
1 1 0

1 2 1

1 3 2

1 4 1

1 5 2

1 6 2

1 7 3

2 2 0

2 3 1

3 3 0

4 4 0

4 5 1

4 6 1

4 7 2

5 5 0

6 6 0

6 7 1

7 7 0

www.percona.com

Choosing the Right Design

Design Tables Query
Child

Query
Subtree

Delete
Node

Insert
Node

Move
Subtree

Referential
Integrity

Adjacency
List

1 Easy Hard Easy Easy Easy Yes

Path
Enumeration

1 Hard Easy Easy Easy Easy No

Nested Sets 1 Hard Easy Hard Hard Hard No

Closure
Table

2 Easy Easy Easy Easy Easy Yes

www.percona.com

PHP Demo
of Closure Table

www.percona.com

Hierarchical Test Data

• Integrated Taxonomic Information System
- http://itis.gov/
- Free authoritative taxonomic information on plants,

animals, fungi, microbes
- 518,756 scientific names (as of Feb 2011)

www.percona.com

California Poppy
Kingdom: Plantae
Division: Tracheobionta
Class: Magnoliophyta
Order: Magnoliopsida
unranked: Magnoliidae
unranked: Papaverales
Family: Papaveraceae
Genus: Eschscholzia
Species: Eschscholzia californica

www.percona.com

California Poppy
Kingdom: Plantae
Division: Tracheobionta
Class: Magnoliophyta
Order: Magnoliopsida
unranked: Magnoliidae
unranked: Papaverales
Family: Papaveraceae
Genus: Eschscholzia
Species: Eschscholzia californica

id=18956

www.percona.com

California Poppy: ITIS Entry

SELECT * FROM Hierarchy
WHERE hierarchy_string LIKE ‘%-18956’;

hierarchy_string
202422-564824-18061-18063-18064-18879-18880-18954-18956

www.percona.com

California Poppy: ITIS Entry

SELECT * FROM Hierarchy
WHERE hierarchy_string LIKE ‘%-18956’;

hierarchy_string
202422-564824-18061-18063-18064-18879-18880-18954-18956

ITIS data uses
path enumeration

...but I converted
it to closure table

www.percona.com

Hierarchical Data Classes
abstract class ZendX_Db_Table_TreeTable

 extends Zend_Db_Table_Abstract
{
 public function fetchTreeByRoot($rootId, $expand)
 public function fetchBreadcrumbs($leafId)
}

www.percona.com

Hierarchical Data Classes
class ZendX_Db_Table_Row_TreeRow

 extends Zend_Db_Table_Row_Abstract
{
 public function addChildRow($childRow)
 public function getChildren()
}

class ZendX_Db_Table_Rowset_TreeRowset
 extends Zend_Db_Table_Rowset_Abstract
{
 public function append($row)
}

www.percona.com

Using TreeTable
class ItisTable extends ZendX_Db_Table_TreeTable

{
 protected $_name = “longnames”;
 protected $_closureName = “treepaths”;
}

$itis = new ItisTable();

www.percona.com

Breadcrumbs
$breadcrumbs = $itis->fetchBreadcrumbs(18956);
foreach ($breadcrumbs as $crumb) {

 print $crumb->completename . “ > ”;
}

Plantae > Tracheobionta > Magnoliophyta > Magnoliopsida >
Magnoliidae > Papaverales > Papaveraceae > Eschscholzia >
Eschscholzia californica >

www.percona.com

Breadcrumbs SQL

SELECT a.* FROM longnames AS a
INNER JOIN treepaths AS c ON a.tsn = c.a
WHERE (c.d = 18956)
ORDER BY c.l DESC

www.percona.com

How Does it Perform?

•Query profile = 0.0006 sec
•MySQL EXPLAIN:

table type key ref rows extra

c ref tree_dl const 9 Using where; Using index

a eq_ref primary c.a 1

www.percona.com

Dump Tree
$tree = $itis->fetchTreeByRoot(18880); // Papaveraceae
print_tree($tree);

function print_tree($tree, $prefix = ‘’)
{
 print “{$prefix} {$tree->completename}\n”;
 foreach ($tree->getChildren() as $child) {
 print_tree($child, “{$prefix} ”);
 }
}

www.percona.com

Dump Tree Result
 Papaveraceae
 Platystigma
 Platystigma linearis
 Glaucium
 Glaucium corniculatum
 Glaucium flavum
 Chelidonium
 Chelidonium majus
 Bocconia
 Bocconia frutescens
 Stylophorum
 Stylophorum diphyllum
 Stylomecon
 Stylomecon heterophylla
 Canbya
 Canbya aurea
 Canbya candida
 Chlidonium
 Chlidonium majus

Romneya
 Romneya coulteri
 Romneya trichocalyx
 Dendromecon
 Dendromecon harfordii
 Dendromecon rigida
 Eschscholzia
 Eschscholzia californica
 Eschscholzia glyptosperma
 Eschscholzia hypecoides
 Eschscholzia lemmonii
 Eschscholzia lobbii
 Eschscholzia minutiflora
 Eschscholzia parishii
 Eschscholzia ramosa
 Eschscholzia rhombipetala
 Eschscholzia caespitosa
etc...

www.percona.com

Dump Tree SQL

SELECT d.*, p.a AS _parent
FROM treepaths AS c
INNER JOIN longnames AS d ON c.d = d.tsn
LEFT JOIN treepaths AS p ON p.d = d.tsn
 AND p.a IN (202422, 564824, 18053, 18020)
 AND p.l = 1
WHERE (c.a = 202422)
 AND (p.a IS NOT NULL OR d.tsn = 202422)
ORDER BY c.l, d.completename;

www.percona.com

Dump Tree SQL

SELECT d.*, p.a AS _parent
FROM treepaths AS c
INNER JOIN longnames AS d ON c.d = d.tsn
LEFT JOIN treepaths AS p ON p.d = d.tsn
 AND p.a IN (202422, 564824, 18053, 18020)
 AND p.l = 1
WHERE (c.a = 202422)
 AND (p.a IS NOT NULL OR d.tsn = 202422)
ORDER BY c.l, d.completename;

show children
of these nodes

www.percona.com

How Does it Perform?

•Query profile = 0.20 sec on Macbook Pro
•MySQL EXPLAIN:

table type key ref rows extra

c ref tree_adl const 114240 Using index; Using
temporary; Using filesort

d eq_ref primary c.d 1

p ref tree_dl c.d,
const

1 Using where; Using index

www.percona.com

SHOW CREATE TABLE
CREATE TABLE `treepaths` (

 `a` int(11) NOT NULL DEFAULT '0',
 `d` int(11) NOT NULL DEFAULT '0',
 `l` tinyint(3) unsigned NOT NULL DEFAULT '0',
 PRIMARY KEY (`a`,`d`),
 KEY `tree_adl` (`a`,`d`,`l`),
 KEY `tree_dl` (`d`,`l`),
 CONSTRAINT FOREIGN KEY (`a`)
 REFERENCES `longnames` (`tsn`),
 CONSTRAINT FOREIGN KEY (`d`)
 REFERENCES `longnames` (`tsn`)
) ENGINE=InnoDB

www.percona.com

SHOW TABLE STATUS

Name: treepaths
Engine: InnoDB
Version: 10
Row_format: Compact
Rows: 4600439
Avg_row_length: 62
Data_length: 288276480
Max_data_length: 0
Index_length: 273137664
Data_free: 7340032

www.percona.com

Demo Time!

www.percona.com

SQL Antipatterns

http://www.pragprog.com/titles/bksqla/

http://www.pragprog.com/titles/bksqla/sql-antipatterns
http://www.pragprog.com/titles/bksqla/sql-antipatterns

www.percona.com

License and Copyright

Copyright 2010-2013 Bill Karwin
www.slideshare.net/billkarwin

Released under a Creative Commons 3.0 License:
http://creativecommons.org/licenses/by-nc-nd/3.0/

You are free to share - to copy, distribute and
transmit this work, under the following conditions:

Attribution.
You must attribute this work

to Bill Karwin.

Noncommercial.
You may not use this work
for commercial purposes.

No Derivative Works.
You may not alter, transform,

or build upon this work.

http://www.karwin.com
http://www.karwin.com
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

