
2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 1/17

Non Recursive CTEs Explained and Why to Use

�em

Introduction to Non Recursive CTEs

In this article we explore non recursive CTEs (Common Table Expressions). This is

a broad class, and basically covers every form of CTEs except those that call

themselves. This other class is called the recursive CTEs; they are covered in the

next article.

If you’re unfamiliar with CTEs I would encourage you to read Introduction to

Common Table Expressions. Once you’re familiar, then come back to this article

and we’ll dig deeper into the reasons you would want to use non recursive CTEs

and provide you with some good examples along the way.

Note: All the examples for this lesson are based on Microsoft SQL Server

Management Studio and the AdventureWorks2012 database. You can get

started using these free tools using my Guide Getting Started Using SQL Server.

WITH Clause

The WITH keyword is used when you start de�ning your common table

expressions. It is used for both recursive CTEs as well as non recursive CTEs.

CTEs are table expressions, meaning they return a temporary result that can be

used in the scope of an SELECT, INSERT, UPDATE, DELETE, or APPLY statement.

Here is generalized example of WITH:

https://www.essentialsql.com/introduction-common-table-expressions-ctes/
https://www.essentialsql.com/get-started-with-sql-server/
https://www.essentialsql.com/
javascript:void(0)

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 2/17

WITH TableExpressionName (Column1, Column2, …, ColumnN)

AS

(Query Definition)

The CTE has two parts. The �rst part de�nes the name of the CTE and it the

columns contained within it. This is the table expression’s de�nition. The second

part is the query de�nition. This is the SELECT statement used to populate the

expression with rows.

You can de�ne more than one CTE in a statement. You see an example of this

further along in this article.

When writing the query de�nition keep in mind that the following cannot be used

within it:

ORDER BY, unless you also use as TOP clause

INTO

OPTION clause with query hints

FOR BROWSE

For more information regarding the WITH keyword, refer to the MSDN

documentation.

Reasons to use non recursive CTEs:

There are many reasons to use non recursive common table expressions. They

include:

Readability – Non recursive CTEs can make your query easier to read by

organizing complex code, and eliminating the need to repeat complicated

expressions.

Substitute for a View – Views are great for encapsulating query logic and

promoting reuse, but there are times when you you’re either unable to create a

view due to permissions, or the view would only be used in one query.

https://docs.microsoft.com/en-us/sql/t-sql/queries/with-common-table-expression-transact-sql?redirectedfrom=MSDN&view=sql-server-ver15
onlyice
Highlight

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 3/17

Limitations – Overcome SELECT statement limitations, such as referencing

itself (recursion), or performing GROUP BY using non-deterministic functions.

Ranking – Whenever you want to use ranking function such as

ROW_NUMBER(), RANK(), NTILE() etc.

Let’s look at each of these reasons, in turn, using examples. By the time we’re

done, you’ll see how to use one or more non recursive CTEs in a statement to

work with joins. Also, you’ll see how you can replace a correlated subquery with

a two non recursive CTEs.

Readability

As queries get larger is can become really dif�cult to understand how they work.

In my mind, readability doesn’t mean the query has less lines. Instead, it means

that it is understandable to you and others. I think CTEs help improve readability

several ways.

They help separate out query logic. If you are joining two complex queries, you

can use non recursive CTEs to separate out the complexity of the queries from the

actual join. This not only helps in debugging, as you can independently run the

query de�nition to test it, but you can more easily identify the parts used to do

the join.

Also, CTEs improve readability by eliminating repeating expressions. There are

situations where you want to display an expression and then sort by it. In SQL

server, the expression has to be repeated in both the SELECT clause and ORDER

BY; however, if you use a CTE, this isn’t the case.

Readability such as Reference the resulting table multiple times in the same

statement.

For the �rst couple of examples, we’re going to assume our original query is the

following:

https://www.essentialsql.com/get-ready-to-learn-sql-server-20-using-subqueries-in-the-select-statement/
https://www.essentialsql.com/get-ready-to-learn-sql-12-introduction-to-database-joins/
onlyice
Highlight

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 4/17

SELECT Substring(Person.LastName,1,1) + ' ' + Person.FirstName as SortValue,

 Employee.NationalIDNumber,

 Person.FirstName,

 Person.LastName,

 Employee.JobTitle

FROM HumanResources.Employee

 INNER JOIN

 Person.Person

 ON HumanResources.Employee.BusinessEntityID = person.BusinessEntityID

WHERE Person.LastName >= 'L'AND

 (Employee.JobTitle Like 'Marketing%' OR

 Employee.JobTitle Like 'Production%')

ORDER BY Substring(Person.LastName,1,1) + ' ' + Person.FirstName

We’ll now take this statement show you how it is easier to read and maintain

using CTEs. Of course our example isn’t that complex, so it is still pretty readable,

but I think as we work through the solution, it will help you see how CTEs can

really help you in real world situations where your queries can be thirty or more

lines long!

CTE joined to normal table

The �rst thing we can do is move the query used to retrieve person rows in to a

CTE as so

WITH Employee_CTE (BusinessEntityID, NationalIDNumber, JobTitle)

AS (SELECT BusinessEntityID,

 NationalIDNumber,

 JobTitle

 FROM HumanResources.Employee

 WHERE (Employee.JobTitle LIKE 'Marketing%'

 OR Employee.JobTitle LIKE 'Production%'))

SELECT Substring(Person.LastName, 1, 1) + ' ' + Person.FirstName as

SortValue,

 Employee_CTE.NationalIDNumber,

 Person.FirstName,

 Person.LastName,

 Employee_CTE.JobTitle

FROM Employee_CTE

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 5/17

 INNER JOIN

 Person.Person

 ON Employee_CTE.BusinessEntityID = Person.BusinessEntityID

WHERE Person.LastName >= 'L'

ORDER BY Substring(Person.LastName, 1, 1) + ' ' + Person.FirstName;

Notice that the CTE is de�ned to return three columns: BusinessEntityID,

NationalID, and JobTitle.

Also, you see we’ve pulled in the �ltering criterial into the CTEs query de�nition.

The overall query is still a bit messy, but hopefully you’re starting to see how

CTEs can help to separate various query operations to make queries easier to

read.

The next thing we could do to simplify the query is to create another CTE to

handle Person table rows.

CTE joined to another CTE

In the example below are two CTEs. I’ve colored them blue and green

respectively. The blue colored CTE is the same as the above example, the green

one is newly added, and really helps to simplify the overall query.

WITH Employee_CTE (BusinessEntityID, NationalIDNumber, JobTitle)

AS (SELECT BusinessEntityID,

 NationalIDNumber,

 JobTitle

 FROM HumanResources.Employee

 WHERE (Employee.JobTitle LIKE 'Marketing%'

 OR Employee.JobTitle LIKE 'Production%')),

 Person_CTE (BusinessEntityID, FirstName, LastName, SortValue)

AS (SELECT BusinessEntityID,

 FirstName,

 LastName,

 Substring(Person.LastName, 1, 1) + ' ' + Person.FirstName

 FROM Person.Person

 WHERE Person.LastName >= 'L')

SELECT Person_CTE.SortValue,

 Employee_CTE.NationalIDNumber,

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 6/17

 Person_CTE.FirstName,

 Person_CTE.LastName,

 Employee_CTE.JobTitle

FROM Employee_CTE

 INNER JOIN

 Person_CTE

 ON Employee_CTE.BusinessEntityID = Person_CTE.BusinessEntityID

ORDER BY Person_CTE.SortValue;

In our original example the SortValue expression, Substring(Person.LastName, 1,

1) + ‘ ‘ + Person.FirstName, was repeated in both the SELECT clause and ORDER

BY statement. Now, by placing the SortValue expression within the CTE, we only

need to de�ne it once!

Compare the original query to the �nal one:

Two CTE’s joined to one another.

I think the original query is harder to read and maintain for these reasons:

1. The SortValue expression is listed twice.

2. The �ltering of both tables are in the same expression.

3. Since queries for both the employee and person are in the same statement it is

dif�cult to separate them for debugging purposes.

https://www.essentialsql.com/wp-content/uploads/2016/06/CTE-Joined-to-CTE.png
onlyice
Highlight

onlyice
这是个 CTE 简化了查询的例子。

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 7/17

I like having the statement broke out into a CTE because:

1. If I need to verify what rows are being returned by a CTE, it’s as simple as

running the query de�nition in a separate query window.

2. Expression, such as that used for SortValue, aren’t repeated.

3. The �nal Query Using CTEs is easier to read. You can focus on the join

conditions, and not be distracted by �ltering nor expressions.

CTE joined to Self

As you have seen you can join a CTE to another table, or CTE. But did you know

you can join a CTE to itself?

Note: a table is joined to itself is a self-join.

Consider the following CTE:

WITH Department_CTE (Name, GroupName)

AS (SELECT Name,

 GroupName

 FROM HumanResources.Department)

SELECT D1.Name,

 D2.Name

FROM Department_CTE AS D1

INNER JOIN

Department_CTE AS D2

ON d1.GroupName = d2.GroupName

Here you can see one CTE is de�ned as Department_CTE and that this is then

used twice within the query.

The result of this query is to list combinations of department names within the

same department group:

onlyice
Highlight

onlyice
CTE 的 result table 还可以做 self join。

对比 JOIN 非常简化 SQL 语句。

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 8/17

CTE Self Join

Substitute for a View

As your SQL becomes more complex you’ll �nd that using views are a great way

to hide the inner workings of a query and allow you to just focus on the results.

This is especially true when you’re working with data involving multiple joins.

With a view you can encapsulate all that query and join logic into the view.

Queries using the view are simpler and easier to read.

But there are times when it may not make sense to create a view. For instance, if

you don’t have permissions to create database objects, such as when using a

third party database, or when the only time you’ll need to us the view is just once.

In these cases, you can use a common table expression.

When creating a CTE, keep in mind the CTEs query de�nition is the same as the

query used to create the view.

In the diagram below we show a query two ways. In blue you’ll see de�ned as

view, and then used in a query. It is then shown in green as a CTE.

https://www.essentialsql.com/non-recursive-ctes/C
https://www.essentialsql.com/what-is-a-relational-database-view/
onlyice
Highlight

onlyice
Non-recursive CTE 的功能和 view 非常相似。如果你没有创建 view 的权限，可以使用 CTE，类似一个一次性的 view。

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 9/17

Substituting a View with a CTE

We then take the same query used to de�ne the view and use that for the CTE

query de�nition. Finally, you can see that the CTEs �nal query is exactly like that

used to reference the view.

CTE versus Derived Table

Derived tables are table results de�ned in the FROM clause. Given that derived

tables return a table expression, it should be no surprise that you can use CTEs in

their place.

Consider the following query. The derived tables are color coded in red and

green.

SELECT Quota.TerritoryID,

 Quota.TerritoryQuota,

 Sales.TerritorySales,

 Sales.TerritorySales - Quota.TerritoryQuota

FROM (SELECT TerritoryID,

 SUM(SalesQuota) AS TerritoryQuota

 FROM Sales.SalesPerson

 GROUP BY TerritoryID) AS Quota

INNER JOIN

 (SELECT SOH.TerritoryID,

 SUM(SOH.TotalDue) AS TerritorySales

 FROM Sales.SalesOrderHeader AS SOH

https://www.essentialsql.com/wp-content/uploads/2016/06/Substiture-View-with-CTE.png
https://www.essentialsql.com/get-ready-to-learn-sql-server-22-using-subqueries-in-the-from-clause/
onlyice
CTE 替代 view 的实际例子。

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 10/17

 GROUP BY SOH.TerritoryID) AS Sales

ON Quota.TerritoryID = Sales.TerritoryID

We can make it easier to read the statement by pulling out the table expression

into a CTE. Here is the same query using CTEs instead of derived tables:

WITH Quota (territoryid, quota)

 AS (SELECT territoryid,

 Sum(salesquota) AS TerritoryQuota

 FROM sales.salesperson

 GROUP BY territoryid),

 Sales (territoryid, sales)

AS (SELECT SOH.territoryid,

 Sum(SOH.totaldue) AS TerritorySales

 FROM sales.salesorderheader AS SOH

 GROUP BY SOH.territoryid)

SELECT Quota.territoryid,

 Quota.quota,

 Sales.sales,

 Sales.sales - Quota.quota

FROM Quota

 INNER JOIN

 Sales

 ON Quota.territoryid = Sales.territoryid;

By using CTEs we move the code used to de�ne the query results for Quota and

Sales away from the portion used to combine the table together.

I think this makes it much easier to maintain. For instance, if you need to make

changes, it’s easier to know where to make a change. Also, it makes it easier to

be able to see what is actually being joined together. The queries for each

derived table are cluttering that portion of the SELECT statement.

CTEs versus Subqueries

CTEs and subqueries are similar, but CTEs have capabilities not found with

subqueries.

https://www.essentialsql.com/get-ready-to-learn-sql-server-19-introduction-to-sub-queries/
onlyice
CTE 可以取代 subquery 和 derived table 的能力非常明显，不再多描述，例子可以简单看看。

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 11/17

Subqueries and CTEs:

Are table expressions created at run-time. They are temporary objects.

Can be created and used within stored procedures, triggers, and views.

Can be correlated or non-correlated. A CTE can reference a CTE previously

de�ned in the same statement.

Can be in in SELECT, FROM, WHERE, HAVING, IN, EXISTS clauses.

There are some differences between subqueries and CTEs, notably:

A subquery is de�ned within an outer query. A CTE is de�ned before calling it

from within the query.

A CTE can reference itself, a subquery cannot.

A CTE can reference other CTEs within the same WITH clause (Nest). A

subquery cannot reference other subqueries.

A CTE can be referenced multiple times from a calling query. A subquery

cannot be referenced.

CTE versus Correlated Subquery

Correlated subqueries can also be replaced with non recursive CTEs. This

shouldn’t be a new concept, as we’ve seen in the past it is easy to convert a

correlated sub query into a join. Given this, and knowing that joins are easily

moved into non recursive CTEs, you can see the possibilities.

Let’s that the following correlated subquery which displays the sales order

information. The subquery is used to calculate the average line total for each

sales order.

SELECT salesorderid,

 salesorderdetailid,

 linetotal,

 (SELECT Avg(linetotal)

 FROM sales.salesorderdetail

https://www.essentialsql.com/introduction-stored-procedures/

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 12/17

 WHERE salesorderid = SOD.salesorderid) AS AverageLineTotal

 FROM sales.salesorderdetail SOD

To replicate this query using a CTE we �rst need to create query de�nition to

calculate the average line total for each Sales Order.

This common table expression is then joined to the sales order table to obtain our

�nal result.

WITH linetotal_cte (salesorderid, averagelinetotal)

AS (SELECT salesorderid,

 Avg(linetotal)

 FROM sales.salesorderdetail

 GROUP BY salesorderid)

 SELECT SOD.salesorderid,

 SOD.salesorderdetailid,

 SOD.linetotal,

 LT.averagelinetotal

 FROM sales.salesorderdetail SOD

 INNER JOIN linetotal_cte LT

 ON LT.salesorderid = SOD.salesorderid

Limitations

Non Recursive CTEs can also be use to overcome limitations such as “enable

grouping by a column that is derived from a scalar subselect, or a function that is

either not deterministic or has external access.” (TechNet)

Suppose you wanted to know how many departments have the same number of

employees. What query could you use?

Finding the number of employees by department name is pretty easy. We can

use the following query to do so:

SELECT GroupName,

 Name,

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms190766(v=sql.105)?redirectedfrom=MSDN

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 13/17

 (SELECT Count(1)

 FROM HumanResources.EmployeeDepartmentHistory AS H

 WHERE D.DepartmentID = H.DepartmentID

 AND H.EndDate IS NULL) AS NumberEmployees

FROM HumanResources.Department AS D;

The number of employees in each department is calculated using a scalar sub

select. This is colored red in the above query for easy identi�cation. Here is a

sample result:

Scalar sub-select results.

Now let’s take this once step further and count how many departments have the

same number of employees. To do this we should group on NumberEmployees,

but this statement is invalid:

SELECT (SELECT Count(1)

 FROM HumanResources.EmployeeDepartmentHistory AS H

 WHERE D.DepartmentID = H.DepartmentID

 AND H.EndDate IS NULL) AS NumberEmployees,

 Count(Name) SameCount

FROM HumanResources.Department AS D

GROUP BY NumberEmployees

Due to the grouping restriction. The subquer is a scarlar subselect and we’re

trying to group by it. That is a SQL violation! As is

https://www.essentialsql.com/wp-content/uploads/2016/06/CTE-Versus-Correlated-Subquery-Results.png
onlyice
Highlight

onlyice
查询同样员工数的部门数。

这是个 subquery 难解决的问题，原因估计是 SQL 处理过程中，GROUP BY 早于 SELECT 被处理。

如果硬要使用 subquery 来写，下面给了个解法，比较丑陋。

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 14/17

SELECT (SELECT Count(1)

 FROM HumanResources.EmployeeDepartmentHistory AS H

WHERE D.DepartmentID = H.DepartmentID

 AND H.EndDate IS NULL) AS NumberEmployees,

 Count(Name) SameCount

FROM HumanResources.Department AS D

GROUP BY (SELECT Count(1)

 FROM HumanResources.EmployeeDepartmentHistory AS H

 WHERE D.DepartmentID = H.DepartmentID

 AND H.EndDate IS NULL)

To solve this problem, we can de�ne and use a CTE:

WITH Department_CTE (GroupName, Name, NumberEmployees)

AS (SELECT GroupName,

 Name,

 (SELECT Count(1)

 FROM HumanResources.EmployeeDepartmentHistory AS H

 WHERE D.DepartmentID = H.DepartmentID

 AND H.EndDate IS NULL) AS NumberEmployees

 FROM HumanResources.Department AS D)

SELECT NumberEmployees,

 Count(Name) SameCount

FROM Department_CTE

GROUP BY NumberEmployees;

Now we query the CTE and group by the result of the scalar sub select (red text).

The results returned are:

onlyice
用 CTE 则比 subquery 好解决。

可以将 CTE 中的 query 理解成一个单次的查询，这样一条带 WITH 的 SELECT 语句就有 *两次查询*。

而带 subquery 的 SELECT 语句仍然是 *一次查询*。受制于 SQL 处理的逻辑流程，比如 GROUP BY 早于 SELECT 处理。

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 15/17

Final Results of Grouping

From this we can see there are 5 departments with 6 employees.

Use with Ranking functions

You can use ranking functions such as RANK() and NTILE() in conjunction with

windowing functions to return the top items within a group.

Suppose we want to return the top sales within each territory. To do this we can

RANK sales within each territory as 1,2,…, and so on, and then select those with a

rank of 1.

Here is the query you can use to generate sales ranks within territories:

SELECT RANK() OVER(PARTITION BY S.TerritoryID ORDER BY SOH.TOTALDue desc)

 ,S.TerritoryID

 ,SOH.SalesOrderNumber

 ,SOH.TotalDue

FROM Sales.SalesPerson S

INNER JOIN Sales.SalesOrderHeader SOH

ON S.BusinessEntityID = SOH.SalesPersonID

WHERE S.TerritoryID is not NULL

Given this, then our job is to pick only those rows whose RANK() is one. These

are the top ranked sales within each territory. You may think you could repeat the

ranking expression in the WHERE clause to �lter, but this isn’t possible. Windows

functions, such as partition are not allowed in the WHERE clause and if you try to

onlyice
没有兴趣了解 ranking function，跳过

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 16/17

ShareShare TweetTweet PinPin

“wrap” it into a subquery you’ll get an error since the subquery returns more than

one row.

It seems we are stuck. But this is where non recursive CTEs come to our aid.

With a CTE we can de�ne a query to return the sales data ranked by territory and

then query that to only return those items ranked �rst in each territory:

WITH SalesRankCTE (SalesPersonID, Name, TerritoryID, SalesRanking,

SalesOrderNumber, TotalDue)

AS (SELECT SalesPersonID,

 P.FirstName + ' ' + P.LastName,

 S.TerritoryID,

 RANK() OVER (PARTITION BY S.TerritoryID ORDER BY SOH.TOTALDue

DESC),

 SOH.SalesOrderNumber,

 SOH.TotalDue

 FROM Sales.SalesPerson AS S

 INNER JOIN

 Sales.SalesOrderHeader AS SOH

 ON S.BusinessEntityID = SOH.SalesPersonID

 INNER JOIN

 Person.Person AS P

 ON P.BusinessEntityID = S.BusinessEntityID

 WHERE S.TerritoryID IS NOT NULL)

SELECT SalesPersonID,

 Name,

 TerritoryID,

 SalesRanking,

 SalesOrderNumber,

 TotalDue

FROM SalesRankCTE

WHERE SalesRanking = 1;

To help you see this, the original query used to generate rankings is highlighted in

blue. The �lter to only show the top ranked sales in each territory is in red.

2021/4/12 Non Recursive CTEs Explained and Why to Use Them - Essential SQL

https://www.essentialsql.com/non-recursive-ctes/ 17/17

