
2021/4/11 Using a Subqueries in the HAVING clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-23-using-subqueries-in-the-having-clause/ 1/4

Get Ready to Learn SQL Server 23: Using

Subqueries in the HAVING Clause

This is the �fth in a series of articles about subqueries. In this article we discuss

subqueries in the HAVING clause. Other articles discuss their uses in other

clauses.

All the examples for this lesson are based on Microsoft SQL Server Management

Studio and the AdventureWorks2012 database. You can get started using these

free tools using my Guide Getting Started Using SQL Server.

Using Subqueries in the HAVING Clause

You can use sub queries in the HAVING clause to �lter out groups of records. Just

as the WHERE clause is used to �lter rows of records, the HAVING clause is used

to �lter groups. Because of this, it becomes very useful in �ltering on aggregate

values such as averages, summations, and count.

The power of using a subquery in the HAVING clause is now you don’t have to

hard-code values within the comparisons. You can rely on the subquery’s results

to do so for you.

For example, it is now possible to compare the average of a group to the overall

average. We’ve always been able to use the average of the group in the

HAVING clause, but had no way to cmputer the overall average. Now, using

subqueries, this is possible.

In this example we’re selecting employee job titles having remaining vacation

hours greater than the overall average for all employees.

https://www.essentialsql.com/get-ready-to-learn-sql-server-19-introduction-to-sub-queries/
https://www.essentialsql.com/get-started-with-sql-server/
https://www.essentialsql.com/sql-having-clause/
https://www.essentialsql.com/
javascript:void(0)

2021/4/11 Using a Subqueries in the HAVING clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-23-using-subqueries-in-the-having-clause/ 2/4

Here is the query written without the subquery

SELECT JobTitle,

 AVG(VacationHours) AS AverageVacationHours

FROM HumanResources.Employee

GROUP BY JobTitle

HAVING AVG(VacationHours) > 50

I’ve highlighted the value in red that will be replaced by a subquery.

Now here is the complete statement including the subquery:

SELECT JobTitle,

 AVG(VacationHours) AS AverageVacationHours

FROM HumanResources.Employee

GROUP BY JobTitle

HAVING AVG(VacationHours) > (SELECT AVG(VacationHours)

 FROM HumanResources.Employee)

This query is executed as:

1. Compute the remaining average vacation hours for all employees. (subquery)

2. Group records by JobTitle and computer the average vacation hours.

3. Only keep groups whose average vacation hours are greater than the overall

average.

Correlated Subqueries in HAVING Clause

As with any other subquery, subqueries in the HAVING clause can be correlated

with �elds from the outer query.

Suppose we further group the job titles by marital status and only want to keep

those combinations of job titles and martial statuses whose vacation hours are

greater than those for their corresponding overall marital status?

onlyice
好的示例。

避免分两次查询。也避免在 HAVING 中使用 hard-code 的总平均 VacationHour 数据。

2021/4/11 Using a Subqueries in the HAVING clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-23-using-subqueries-in-the-having-clause/ 3/4

In other words, we want to answer a question similar to “do married accountants

have, on average, more remaining vacation, than married employees in general?”

One way to �nd out is to us the following query:

SELECT JobTitle,

 MaritalStatus,

 AVG(VacationHours)

FROM HumanResources.Employee AS E

GROUP BY JobTitle, MaritalStatus

HAVING AVG(VacationHours) >

 (SELECT AVG(VacationHours)

 FROM HumanResources.Employee

 WHERE HumanResources.Employee. MaritalStatus =

 E.MaritalStatus)

There are a couple of things to point out. First, notice that I aliased the Employee

as “E” in the outer query. This allows me to reference the outer table within the

inner query.

Also, with the correlated query, only �elds used in the GROUP BY can be used in

the inner query. For instance, for kicks and grins, I tried replacing MaritalStatus

with Gender and got an error.

SELECT JobTitle,

 MaritalStatus,

 AVG(VacationHours)

FROM HumanResources.Employee AS E

GROUP BY JobTitle, MaritalStatus

HAVING AVG(VacationHours) >

 (SELECT AVG(VacationHours)

 FROM HumanResources.Employee

 WHERE HumanResources.Employee. Gender =

 E. Gender)

Is a broken query. If you try to run it you’ll get the following error:

onlyice
找出某一婚姻状态下，哪些 JobTitle 的平均休假时间大于该婚姻状态下全部雇员的平均休假时间 。

onlyice
Highlight

2021/4/11 Using a Subqueries in the HAVING clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-23-using-subqueries-in-the-having-clause/ 4/4

ShareShare TweetTweet PinPin

Column ‘HumanResources.Employee.Gender’ is invalid in the HAVING clause

because it is not contained in either an aggregate function or the GROUP BY

clause.

Summary

One advantage of using a subquery in the HAVING clause is to avoid hard coding

values, such as an overall average, which can can change and are easily

computed.

As with other queries, it is possible to build correlated subqueries in the HAVING

clause. This can be useful when the subquery is dependent on the outer query’s

column values, and may make it easier to initially understand a query; however,

care should be taken! As with all SQL there are usually many ways to write a

query to return the same result. If performance is a concern, then use query plans

to understand performance and explore alternatives.

