
2021/4/10 Subquery in the WHERE Clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-21-using-subqueries-in-the-where-clause/ 1/11

Using Subqueries in the WHERE Clause

This is the third in a series of articles about subqueries. In this article, we discuss

subqueries in the WHERE clause. Other articles discuss their uses in other

clauses.

All the examples for this lesson are based on Microsoft SQL Server Management

Studio and the AdventureWorks2012 database. You can get started using these

free tools using my Guide Getting Started Using SQL Server.

Using Subqueries in the WHERE Clause

a In some cases it may make sense to rethink the query and use a JOIN, but you

should really study both forms via the query optimizer before making a �nal

decision.

The comparison modi�ers ANY and ALL can be used with greater than, less than,

or equals operators. Doing so provides a means to compare a single value, such

as a column, to one or more results returned from a subquery.

Let’s now explore these in detail

Exist and Not Exists

The EXISTS condition is used in combination with a subquery. It returns TRUE

whenever the subquery returns one or more values.

In its simplest form the syntax for the EXISTS condition is

https://www.essentialsql.com/get-ready-to-learn-sql-server-19-introduction-to-sub-queries/
https://www.essentialsql.com/sql-tutorial/sql-where-clause/
https://www.essentialsql.com/get-started-with-sql-server/
https://www.essentialsql.com/sql-tutorial/sql-joins-visual-explanation-and-introduction/
https://www.essentialsql.com/
javascript:void(0)

2021/4/10 Subquery in the WHERE Clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-21-using-subqueries-in-the-where-clause/ 2/11

WHERE EXISTS (sub query)

Suppose we need to return all sales orders written by salespeople with sales year

to date greater than three million dollars. To do so we can use the EXISTS clause

as shown in this example:

SELECT SalesOrderID,

 RevisionNumber,

 OrderDate

FROM Sales.SalesOrderHeader

WHERE EXISTS (SELECT 1

 FROM sales.SalesPerson

 WHERE SalesYTD > 3000000

 AND SalesOrderHeader.SalesPersonID

 = Sales.SalesPerson.BusinessEntityID)

When this SQL executes the following comparisons are made:

1. The WHERE clause returns all records where the EXISTS clause is TRUE.

2. The EXIST clause uses a correlated subquery. The outer query is correlated to

the inner query by SalesPersonID.

3. Only SalesPersons with SalesYTD greater than three million are included in

the results.

4. The EXISTS clause returns TRUE if one or more rows are returned by the

subquery.

The EXISTS condition is a membership condition in the sense it only returns TRUE

if a result is returned. Conversely, if we want to test for non-membership we can

use NOT EXISTS.

NOT EXISTS returns TRUE if zero rows are returned. So, if we want to �nd all

sales orders that were written by salespeople that didn’t have 3,000,000 in year-

to-date sales, we can use the following query:

https://www.essentialsql.com/sql-tutorial/sql-where-clause/
https://www.essentialsql.com/get-ready-to-learn-sql-server-20-using-subqueries-in-the-select-statement/
onlyice
感觉比较鸡肋。

用 JOIN 可以写。

用 CTE 更清晰且让 DB 更容易优化。

2021/4/10 Subquery in the WHERE Clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-21-using-subqueries-in-the-where-clause/ 3/11

SELECT SalesOrderID,

 RevisionNumber,

 OrderDate

FROM Sales.SalesOrderHeader

WHERE NOT EXISTS (SELECT 1

 FROM sales.SalesPerson

 WHERE SalesYTD > 3000000

 AND SalesOrderHeader.SalesPersonID

 = Sales.SalesPerson.BusinessEntityID)

WHAT happens to NULL?

When the subquery returns a null value what does EXIST return: NULL, TRUE, or

FALSE?

To be honest I was surprised.

I was sure it would return NULL, but to my surprise, I learned it returns TRUE.

Therefore, if your subquery returns a NULL value, the EXISTS statement resolves

to TRUE. In the following example all the SalesOrderHeader rows are returned as

the WHERE clause essentially resolved to TRUE:

SELECT SalesOrderID,

 RevisionNumber,

 OrderDate

FROM Sales.SalesOrderHeader

WHERE EXISTS (SELECT NULL)

As we study the IN operator, we’ll see this behavior is unique to the EXISTS

clause.

IN and NOT IN

We �rst studied the IN operator back in the lesson How to Filter Your Query

Results. When used in subqueries, the mechanics of the IN and NOT IN clause

https://www.essentialsql.com/get-ready-to-learn-sqlserver-how-to-filter-your-query-results/

2021/4/10 Subquery in the WHERE Clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-21-using-subqueries-in-the-where-clause/ 4/11

are the same. Here is a summary of that article.

IN and NOT IN Review

The IN operator is considered a membership type. The membership type

allows you to conduct multiple match tests compactly in one statement. For

instance, consider if you have a couple spelling variations for the leader of the

company such as ‘Owner’, ‘President’, and ‘CEO.’ In c case like this you could

use the in operator to �nd all matches

ContactTitle IN ('CEO', 'Owner', 'President')

The above will math or return turn if the contact title is either ‘CEO’, ‘Owner’,

or ‘President.’ To use the IN comparison operator separate the items you

which to test for with commas and be sure to enclose them in parenthesis.

The full SQL statement for our example is

SELECT CompanyName, ContactName, ContactTitle

FROM Customers

WHERE ContactTitle IN ('CEO', 'Owner', 'President');

Note: The above query isn't meant for

the adventure works database

Using IN with a Subquery

When used with subqueries, the list of values is replaced with a subquery. The

advantage of using a subquery, in this case, is that it helps to make your queries

more data-driven and less brittle.

What I mean is you don’t have to hard code values.

If for instance you’re doing a query to �nd sales order by top salespeople, the

non-sub query way to use the IN statement is

2021/4/10 Subquery in the WHERE Clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-21-using-subqueries-in-the-where-clause/ 5/11

SELECT SalesOrderID,

 OrderDate,

 AccountNumber,

 CustomerID,

 SalesPersonID,

 TotalDue

 FROM Sales.SalesOrderHeader

 WHERE SalesPersonID IN (279, 286, 289)

whose results are

But now since we know about subqueries, we can use the following to obtain the

same list

SELECT SalesOrderID,

 OrderDate,

 AccountNumber,

 CustomerID,

 SalesPersonID,

 TotalDue

 FROM Sales.SalesOrderHeader

 WHERE SalesPersonID IN (SELECT BusinessEntityID

 FROM Sales.SalesPerson

 WHERE Bonus > 5000)

The advantage is that as salespersons sell more or less, the list of salesperson

ID’s returned adjusts.

Just like with other queries you can create a correlated subquery to be used with

the IN clause. Here is the same query we used with the EXIST clause.

https://www.essentialsql.com/wp-content/uploads/2015/02/Subquery-Where-IN.png

2021/4/10 Subquery in the WHERE Clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-21-using-subqueries-in-the-where-clause/ 6/11

It returns all sales orders written by salespeople with sales year to date greater

than three million dollars, but now we use the IN clause:

SELECT SalesOrderID,

 RevisionNumber,

 OrderDate

FROM Sales.SalesOrderHeader

WHERE SalesPersonID IN (SELECT SalesPerson.BusinessEntityID

 FROM sales.SalesPerson

 WHERE SalesYTD > 3000000

 AND SalesOrderHeader.SalesPersonID

 = Sales.SalesPerson.BusinessEntityID)

As IN returns TRUE if the tested value is found in the comparison list, NOT IN

returns TRUE if the tested value is not found. Taking the same query from above,

we can �nd all Sales orders that were written by salespeople that didn’t write

3,000,000 in year-to-date sales, we can write the following query:

SELECT SalesOrderID,

 RevisionNumber,

 OrderDate

FROM Sales.SalesOrderHeader

WHERE SalesPersonID NOT IN (SELECT SalesPerson.BusinessEntityID

 FROM sales.SalesPerson

 WHERE SalesYTD > 3000000

 AND SalesOrderHeader.SalesPersonID

 = Sales.SalesPerson.BusinessEntityID)

WHAT happens to NULL with IN?

When the comparison list only contains the NULL value, then any value

compared to that list returns false.

For instance

onlyice
这个表达比 JOIN 方式更清晰。有它的价值。虽然可读性依然不如 CTE。

2021/4/10 Subquery in the WHERE Clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-21-using-subqueries-in-the-where-clause/ 7/11

SELECT SalesOrderID,

 RevisionNumber,

 OrderDate

FROM Sales.SalesOrderHeader

WHERE SalesOrderID IN (SELECT NULL)

returns zero rows. This is because the IN clause always returns false. Contrast

this to EXISTS, which returns TRUE even when the subquery returns NULL.

Comparison Modi�ers

Comparison operators such as greater than, less than, equal, and not equal can

be modi�ed in interesting ways to enhance comparisons done in conjunction with

WHERE clauses.

Rather than using >, which only makes sense when comparing to a single (scalar)

value, you can use > ANY or > ALL to compare a column value to a list results

returned from the subquery.

Using the > ANY Modi�er

The comparison operator > ANY means greater than one or more items in the

list. This is the same as saying it greater than the MIN value of the list. So the

expression

Sales > ANY (1000, 2000, 2500)

returns TRUE if Sales are greater than 1000 as this expression is equivalent to

Sales > MIN(1000, 2000, 2500)

Which simpli�es to

http://wwwacs.gantep.edu.tr/docs/perl-ebook/ch3.htm

2021/4/10 Subquery in the WHERE Clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-21-using-subqueries-in-the-where-clause/ 8/11

Sales > 1000

Note: You may see some queries using SOME. Queries using SOME return the

same result as those using ANY. Simply said > ANY is the same as > SOME.

Let’s do an example using the adventure works database. We’re going to �nd all

products which may have a high safety stock level. To do so, we’ll look for all

products that have a SafetyStockLevel that is greater than the average

SafetyStockLevel for various DaysToManufacture.

The query to do this is:

SELECT ProductID,

 Name,

 SafetyStockLevel,

 DaysToManufacture

FROM Production.Product

WHERE SafetyStockLevel > ANY (SELECT AVG(SafetyStockLevel)

 FROM Production.Product

 GROUP BY DaysToManufacture)

When this subquery is run it �rst calculates the Average SafetyStockLevel. This

returns a list of numbers. Then for each product row in the outer query

SafetyStockLevel is compared. If it is greater than one or more from the list, then

include it in the results.

Like me, you may at �rst think that > ANY is redundant, and not needed. It is

equivalent to > MIN(…) right?

What I found out is that though it is equivalent in principle, you can’t use MIN.

The statement

SELECT ProductID,

 Name,

onlyice
Highlight

onlyice
比较少看到这种 > ANY 语法。

熟悉一下。

2021/4/10 Subquery in the WHERE Clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-21-using-subqueries-in-the-where-clause/ 9/11

 SafetyStockLevel,

 DaysToManufacture

FROM Production.Product

WHERE SafetyStockLevel > MIN((SELECT AVG(SafetyStockLevel)

 FROM Production.Product

 GROUP BY DaysToManufacture))

Won’t run. It return the error, “Cannot perform an aggregate function on an

expression containing an aggregate or a subquery.”

Using the > ALL Modi�er

The > ALL modi�er works in a similar fashion except it returns the outer row if it’s

comparison value is greater than every value returned by the inner query.

The comparison operator > ALL means greater than the MAX value of the list.

Using the example above, then

Sales > ALL (1000, 2000, 2500)

is equivalent to

Sales > MAX(1000, 2000, 2500)

Which returns TRUE if Sales > 2500

In this example, we’ll return all SalesPeople that have a bonus greater than ALL

salespeople whose year-to-date sales were less than a million dollars.

SELECT p.BusinessEntityID,

 p.FirstName,

 p.LastName,

 s.Bonus,

 s.SalesYTD

2021/4/10 Subquery in the WHERE Clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-21-using-subqueries-in-the-where-clause/ 10/11

FROM Person.Person AS p

 INNER JOIN Sales.SalesPerson AS s

 ON p.BusinessEntityID = s.BusinessEntityID

WHERE s.Bonus > ALL (SELECT Bonus

 FROM Sales.SalesPerson

 WHERE Sales.SalesPerson.SalesYTD

 < 1000000)

Summary of Various Comparison Modi�ers

You can use comparison modi�ers with other operators, such as equals. Use the

chart below to get a better understanding of the examples. I’ve listed all the

combinations, even those that don’t make too much sense.

When reviewing the example assume the subquery returns a list of three

numbers: 1,2,3.

Some combinations of these comparison modi�ers are downright goofy. For

instance, I can’t imagine using “= ALL” or “<> ANY.” The others make sense, and

as we have shown you can really use MAX or MIN as legal equivalent

statements. ANY and ALL do have their places!

2021/4/10 Subquery in the WHERE Clause

https://www.essentialsql.com/get-ready-to-learn-sql-server-21-using-subqueries-in-the-where-clause/ 11/11

ShareShare TweetTweet PinPin

Out of all of the items we discussed today I’ve used EXISTS and NOT EXISTS the

most with subqueries. I use IN quite a bit, but usually with a static list, not with

subqueries.

