
5/17/2021 Distributed locks with Redis – Redis

https://redis.io/topics/distlock 1/8

Try Free

Distributed locks are a very useful primitive in many environments where di�erent
processes must operate with shared resources in a mutually exclusive way.

There are a number of libraries and blog posts describing how to implement a DLM
(Distributed Lock Manager) with Redis, but every library uses a di�erent approach, and
many use a simple approach with lower guarantees compared to what can be achieved
with slightly more complex designs.

This page is an attempt to provide a more canonical algorithm to implement distributed
locks with Redis. We propose an algorithm, called Redlock, which implements a DLM
which we believe to be safer than the vanilla single instance approach. We hope that the
community will analyze it, provide feedback, and use it as a starting point for the
implementations or more complex or alternative designs.

Before describing the algorithm, here are a few links to implementations already available
that can be used for reference.

Redlock-rb (Ruby implementation). There is also a fork of Redlock-rb that adds a gem
for easy distribution and perhaps more.
Redlock-py (Python implementation).
Pottery (Python implementation).
Aioredlock (Asyncio Python implementation).
Redlock-php (PHP implementation).
PHPRedisMutex (further PHP implementation)
cheprasov/php-redis-lock (PHP library for locks)
rtckit/react-redlock (Async PHP implementation)
Redsync (Go implementation).
Redisson (Java implementation).
Redis::DistLock (Perl implementation).
Redlock-cpp (C++ implementation).
Redlock-cs (C#/.NET implementation).
RedLock.net (C#/.NET implementation). Includes async and lock extension support.
ScarletLock (C# .NET implementation with con�gurable datastore)
Redlock4Net (C# .NET implementation)
node-redlock (NodeJS implementation). Includes support for lock extension.

�

Distributed locks with Redis

Implementations

Safety and Liveness guarantees

https://redis.io/
https://redislabs.com/try-free
https://github.com/antirez/redlock-rb
https://github.com/leandromoreira/redlock-rb
https://github.com/SPSCommerce/redlock-py
https://github.com/brainix/pottery#redlock
https://github.com/joanvila/aioredlock
https://github.com/ronnylt/redlock-php
https://github.com/malkusch/lock#phpredismutex
https://github.com/cheprasov/php-redis-lock
https://github.com/rtckit/reactphp-redlock
https://github.com/go-redsync/redsync
https://github.com/mrniko/redisson
https://github.com/sbertrang/redis-distlock
https://github.com/jacket-code/redlock-cpp
https://github.com/kidfashion/redlock-cs
https://github.com/samcook/RedLock.net
https://github.com/psibernetic/scarletlock
https://github.com/LiZhenNet/Redlock4Net
https://github.com/mike-marcacci/node-redlock

5/17/2021 Distributed locks with Redis – Redis

https://redis.io/topics/distlock 2/8

We are going to model our design with just three properties that, from our point of view,
are the minimum guarantees needed to use distributed locks in an e�ective way.

1. Safety property: Mutual exclusion. At any given moment, only one client can hold a
lock.

2. Liveness property A: Deadlock free. Eventually it is always possible to acquire a lock,
even if the client that locked a resource crashes or gets partitioned.

3. Liveness property B: Fault tolerance. As long as the majority of Redis nodes are up,
clients are able to acquire and release locks.

To understand what we want to improve, let’s analyze the current state of a�airs with most
Redis-based distributed lock libraries.

The simplest way to use Redis to lock a resource is to create a key in an instance. The key is
usually created with a limited time to live, using the Redis expires feature, so that
eventually it will get released (property 2 in our list). When the client needs to release the
resource, it deletes the key.

Super�cially this works well, but there is a problem: this is a single point of failure in our
architecture. What happens if the Redis master goes down? Well, let’s add a slave! And use
it if the master is unavailable. This is unfortunately not viable. By doing so we can’t
implement our safety property of mutual exclusion, because Redis replication is
asynchronous.

There is an obvious race condition with this model:

1. Client A acquires the lock in the master.

2. The master crashes before the write to the key is transmitted to the slave.

3. The slave gets promoted to master.

4. Client B acquires the lock to the same resource A already holds a lock for. SAFETY
VIOLATION!

Sometimes it is perfectly �ne that under special circumstances, like during a failure,
multiple clients can hold the lock at the same time. If this is the case, you can use your
replication based solution. Otherwise we suggest to implement the solution described in
this document.

Before trying to overcome the limitation of the single instance setup described above, let’s
check how to do it correctly in this simple case, since this is actually a viable solution in
applications where a race condition from time to time is acceptable, and because locking

Why failover-based implementations are not enough

Correct implementation with a single instance

onlyice
Highlight
最常见的（同时也是不可靠的）加锁方式：利用 Redis 的 expire 功能，对某个 key SET NX。

两个问题：
- Redis 的主从同步（replication）是异步的，因此主挂了的时候，SET key NX 的操作可能没有传到从。此时如果从被设置成主，可以导致锁被重新加上
- 进程 1 加锁后，在 key 已经失效后再通过 DEL key 释放锁，此时会把别人加的锁释放掉

onlyice
Highlight

5/17/2021 Distributed locks with Redis – Redis

https://redis.io/topics/distlock 3/8

into a single instance is the foundation we’ll use for the distributed algorithm described
here.

To acquire the lock, the way to go is the following:

 SET resource_name my_random_value NX PX 30000

The command will set the key only if it does not already exist (NX option), with an expire of
30000 milliseconds (PX option). The key is set to a value “myrandomvalue”. This value must
be unique across all clients and all lock requests.

Basically the random value is used in order to release the lock in a safe way, with a script
that tells Redis: remove the key only if it exists and the value stored at the key is exactly
the one I expect to be. This is accomplished by the following Lua script:

if redis.call("get",KEYS[1]) == ARGV[1] then
 return redis.call("del",KEYS[1])
else
 return 0
end

This is important in order to avoid removing a lock that was created by another client. For
example a client may acquire the lock, get blocked in some operation for longer than the
lock validity time (the time at which the key will expire), and later remove the lock, that was
already acquired by some other client. Using just DEL is not safe as a client may remove
the lock of another client. With the above script instead every lock is “signed” with a
random string, so the lock will be removed only if it is still the one that was set by the client
trying to remove it.

What should this random string be? I assume it’s 20 bytes from /dev/urandom, but you can
�nd cheaper ways to make it unique enough for your tasks. For example a safe pick is to
seed RC4 with /dev/urandom, and generate a pseudo random stream from that. A simpler
solution is to use a combination of unix time with microseconds resolution, concatenating
it with a client ID, it is not as safe, but probably up to the task in most environments.

The time we use as the key time to live, is called the “lock validity time”. It is both the auto
release time, and the time the client has in order to perform the operation required before
another client may be able to acquire the lock again, without technically violating the
mutual exclusion guarantee, which is only limited to a given window of time from the
moment the lock is acquired.

So now we have a good way to acquire and release the lock. The system, reasoning about
a non-distributed system composed of a single, always available, instance, is safe. Let’s

onlyice
Highlight

5/17/2021 Distributed locks with Redis – Redis

https://redis.io/topics/distlock 4/8

extend the concept to a distributed system where we don’t have such guarantees.

In the distributed version of the algorithm we assume we have N Redis masters. Those
nodes are totally independent, so we don’t use replication or any other implicit
coordination system. We already described how to acquire and release the lock safely in a
single instance. We take for granted that the algorithm will use this method to acquire and
release the lock in a single instance. In our examples we set N=5, which is a reasonable
value, so we need to run 5 Redis masters on di�erent computers or virtual machines in
order to ensure that they’ll fail in a mostly independent way.

In order to acquire the lock, the client performs the following operations:

1. It gets the current time in milliseconds.

2. It tries to acquire the lock in all the N instances sequentially, using the same key
name and random value in all the instances. During step 2, when setting the lock in
each instance, the client uses a timeout which is small compared to the total lock
auto-release time in order to acquire it. For example if the auto-release time is 10
seconds, the timeout could be in the ~ 5-50 milliseconds range. This prevents the
client from remaining blocked for a long time trying to talk with a Redis node which is
down: if an instance is not available, we should try to talk with the next instance
ASAP.

3. The client computes how much time elapsed in order to acquire the lock, by
subtracting from the current time the timestamp obtained in step 1. If and only if the
client was able to acquire the lock in the majority of the instances (at least 3), and the
total time elapsed to acquire the lock is less than lock validity time, the lock is
considered to be acquired.

4. If the lock was acquired, its validity time is considered to be the initial validity time
minus the time elapsed, as computed in step 3.

5. If the client failed to acquire the lock for some reason (either it was not able to lock
N/2+1 instances or the validity time is negative), it will try to unlock all the instances
(even the instances it believed it was not able to lock).

The algorithm relies on the assumption that while there is no synchronized clock across
the processes, still the local time in every process �ows approximately at the same rate,
with an error which is small compared to the auto-release time of the lock. This
assumption closely resembles a real-world computer: every computer has a local clock and
we can usually rely on di�erent computers to have a clock drift which is small.

At this point we need to better specify our mutual exclusion rule: it is guaranteed only as
long as the client holding the lock will terminate its work within the lock validity time (as

The Redlock algorithm

Is the algorithm asynchronous?

onlyice
Highlight

onlyice
Highlight
这里的按顺序的（sequentially）并不是一个要求。作者在后文也提到可以并行地同时加锁。

5/17/2021 Distributed locks with Redis – Redis

https://redis.io/topics/distlock 5/8

obtained in step 3), minus some time (just a few milliseconds in order to compensate for
clock drift between processes).

For more information about similar systems requiring a bound clock drift, this paper is an
interesting reference: Leases: an e�cient fault-tolerant mechanism for distributed �le
cache consistency.

When a client is unable to acquire the lock, it should try again after a random delay in
order to try to desynchronize multiple clients trying to acquire the lock for the same
resource at the same time (this may result in a split brain condition where nobody wins).
Also the faster a client tries to acquire the lock in the majority of Redis instances, the
smaller the window for a split brain condition (and the need for a retry), so ideally the
client should try to send the SET commands to the N instances at the same time using
multiplexing.

It is worth stressing how important it is for clients that fail to acquire the majority of locks,
to release the (partially) acquired locks ASAP, so that there is no need to wait for key expiry
in order for the lock to be acquired again (however if a network partition happens and the
client is no longer able to communicate with the Redis instances, there is an availability
penalty to pay as it waits for key expiration).

Releasing the lock is simple and involves just releasing the lock in all instances, whether or
not the client believes it was able to successfully lock a given instance.

Is the algorithm safe? We can try to understand what happens in di�erent scenarios.

To start let’s assume that a client is able to acquire the lock in the majority of instances. All
the instances will contain a key with the same time to live. However, the key was set at
di�erent times, so the keys will also expire at di�erent times. But if the �rst key was set at
worst at time T1 (the time we sample before contacting the �rst server) and the last key
was set at worst at time T2 (the time we obtained the reply from the last server), we are
sure that the �rst key to expire in the set will exist for at least MIN_VALIDITY=TTL-(T2-

T1)-CLOCK_DRIFT. All the other keys will expire later, so we are sure that the keys will be

simultaneously set for at least this time.

During the time that the majority of keys are set, another client will not be able to acquire
the lock, since N/2+1 SET NX operations can’t succeed if N/2+1 keys already exist. So if a
lock was acquired, it is not possible to re-acquire it at the same time (violating the mutual
exclusion property).

Retry on failure

Releasing the lock

Safety arguments

http://dl.acm.org/citation.cfm?id=74870
onlyice
Highlight
如果在海量并发的场景下，是否会有性能问题？

onlyice
Highlight
T1 是在第一次发请求给 Redis 的时刻，此时请求未到 Redis；
T2 是最后一次收到 Redis 已上锁的回复时的时刻；在这个例子中，只要你收到第 3 个上锁成功的回复，就算 T2。

5/17/2021 Distributed locks with Redis – Redis

https://redis.io/topics/distlock 6/8

However we want to also make sure that multiple clients trying to acquire the lock at the
same time can’t simultaneously succeed.

If a client locked the majority of instances using a time near, or greater, than the lock
maximum validity time (the TTL we use for SET basically), it will consider the lock invalid
and will unlock the instances, so we only need to consider the case where a client was able
to lock the majority of instances in a time which is less than the validity time. In this case
for the argument already expressed above, for MIN_VALIDITY no client should be able to

re-acquire the lock. So multiple clients will be able to lock N/2+1 instances at the same
time (with "time" being the end of Step 2) only when the time to lock the majority was
greater than the TTL time, making the lock invalid.

Are you able to provide a formal proof of safety, point to existing algorithms that are
similar, or �nd a bug? That would be greatly appreciated.

The system liveness is based on three main features:

1. The auto release of the lock (since keys expire): eventually keys are available again to
be locked.

2. The fact that clients, usually, will cooperate removing the locks when the lock was not
acquired, or when the lock was acquired and the work terminated, making it likely
that we don’t have to wait for keys to expire to re-acquire the lock.

3. The fact that when a client needs to retry a lock, it waits a time which is comparably
greater than the time needed to acquire the majority of locks, in order to
probabilistically make split brain conditions during resource contention unlikely.

However, we pay an availability penalty equal to TTL time on network partitions, so if there
are continuous partitions, we can pay this penalty inde�nitely. This happens every time a
client acquires a lock and gets partitioned away before being able to remove the lock.

Basically if there are in�nite continuous network partitions, the system may become not
available for an in�nite amount of time.

Many users using Redis as a lock server need high performance in terms of both latency to
acquire and release a lock, and number of acquire / release operations that it is possible to
perform per second. In order to meet this requirement, the strategy to talk with the N
Redis servers to reduce latency is de�nitely multiplexing (or poor man's multiplexing,
which is, putting the socket in non-blocking mode, send all the commands, and read all the
commands later, assuming that the RTT between the client and each instance is similar).

However there is another consideration to do about persistence if we want to target a
crash-recovery system model.

Liveness arguments

Performance, crash-recovery and fsync

https://redis.io/commands/ttl
onlyice
Highlight

5/17/2021 Distributed locks with Redis – Redis

https://redis.io/topics/distlock 7/8

Basically to see the problem here, let’s assume we con�gure Redis without persistence at
all. A client acquires the lock in 3 of 5 instances. One of the instances where the client was
able to acquire the lock is restarted, at this point there are again 3 instances that we can
lock for the same resource, and another client can lock it again, violating the safety
property of exclusivity of lock.

If we enable AOF persistence, things will improve quite a bit. For example we can upgrade
a server by sending SHUTDOWN and restarting it. Because Redis expires are semantically
implemented so that virtually the time still elapses when the server is o�, all our
requirements are �ne. However everything is �ne as long as it is a clean shutdown. What
about a power outage? If Redis is con�gured, as by default, to fsync on disk every second,
it is possible that after a restart our key is missing. In theory, if we want to guarantee the
lock safety in the face of any kind of instance restart, we need to enable fsync=always in
the persistence setting. This in turn will totally ruin performances to the same level of CP
systems that are traditionally used to implement distributed locks in a safe way.

However things are better than what they look like at a �rst glance. Basically the algorithm
safety is retained as long as when an instance restarts after a crash, it no longer
participates to any currently active lock, so that the set of currently active locks when the
instance restarts, were all obtained by locking instances other than the one which is
rejoining the system.

To guarantee this we just need to make an instance, after a crash, unavailable for at least a
bit more than the max TTL we use, which is, the time needed for all the keys about the
locks that existed when the instance crashed, to become invalid and be automatically
released.

Using delayed restarts it is basically possible to achieve safety even without any kind of
Redis persistence available, however note that this may translate into an availability
penalty. For example if a majority of instances crash, the system will become globally
unavailable for TTL (here globally means that no resource at all will be lockable during this
time).

If the work performed by clients is composed of small steps, it is possible to use smaller
lock validity times by default, and extend the algorithm implementing a lock extension
mechanism. Basically the client, if in the middle of the computation while the lock validity
is approaching a low value, may extend the lock by sending a Lua script to all the instances
that extends the TTL of the key if the key exists and its value is still the random value the
client assigned when the lock was acquired.

The client should only consider the lock re-acquired if it was able to extend the lock into
the majority of instances, and within the validity time (basically the algorithm to use is very
similar to the one used when acquiring the lock).

Making the algorithm more reliable: Extending the lock

https://redis.io/commands/ttl
https://redis.io/commands/ttl

5/17/2021 Distributed locks with Redis – Redis

https://redis.io/topics/distlock 8/8

However this does not technically change the algorithm, so the maximum number of lock
reacquisition attempts should be limited, otherwise one of the liveness properties is
violated.

If you are into distributed systems, it would be great to have your opinion / analysis. Also
reference implementations in other languages could be great.

Thanks in advance!

1. Martin Kleppmann analyzed Redlock here. I disagree with the analysis and posted my
reply to his analysis here.

This website is open source software. See all credits.

Sponsored by

Want to help?

Analysis of Redlock

http://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
http://antirez.com/news/101
https://github.com/redis/redis-io
https://redis.io/topics/sponsors
https://redislabs.com/

