

CHAPTER 4

Encoding and Evolution

Everything changes and nothing stands still.
—Heraclitus of Ephesus, as quoted by Plato in Cratylus (360 BCE)

Applications inevitably change over time. Features are added or modified as new
products are launched, user requirements become better understood, or business cir‐
cumstances change. In Chapter 1 we introduced the idea of evolvability: we should
aim to build systems that make it easy to adapt to change (see “Evolvability: Making
Change Easy” on page 21).

In most cases, a change to an application’s features also requires a change to data that
it stores: perhaps a new field or record type needs to be captured, or perhaps existing
data needs to be presented in a new way.

The data models we discussed in Chapter 2 have different ways of coping with such
change. Relational databases generally assume that all data in the database conforms
to one schema: although that schema can be changed (through schema migrations;
i.e., ALTER statements), there is exactly one schema in force at any one point in time.
By contrast, schema-on-read (“schemaless”) databases don’t enforce a schema, so the
database can contain a mixture of older and newer data formats written at different
times (see “Schema flexibility in the document model” on page 39).

When a data format or schema changes, a corresponding change to application code
often needs to happen (for example, you add a new field to a record, and the applica‐
tion code starts reading and writing that field). However, in a large application, code
changes often cannot happen instantaneously:

111

onlyice
客户端朊务端架构中，存在新老代码与新老通信协议的问题。

• With server-side applications you may want to perform a rolling upgrade (also
known as a staged rollout), deploying the new version to a few nodes at a time,
checking whether the new version is running smoothly, and gradually working
your way through all the nodes. This allows new versions to be deployed without
service downtime, and thus encourages more frequent releases and better evolva‐
bility.

• With client-side applications you’re at the mercy of the user, who may not install
the update for some time.

This means that old and new versions of the code, and old and new data formats,
may potentially all coexist in the system at the same time. In order for the system to
continue running smoothly, we need to maintain compatibility in both directions:

Backward compatibility
Newer code can read data that was written by older code.

Forward compatibility
Older code can read data that was written by newer code.

Backward compatibility is normally not hard to achieve: as author of the newer code,
you know the format of data written by older code, and so you can explicitly handle it
(if necessary by simply keeping the old code to read the old data). Forward compati‐
bility can be trickier, because it requires older code to ignore additions made by a
newer version of the code.

In this chapter we will look at several formats for encoding data, including JSON,
XML, Protocol Buffers, Thrift, and Avro. In particular, we will look at how they han‐
dle schema changes and how they support systems where old and new data and code
need to coexist. We will then discuss how those formats are used for data storage and
for communication: in web services, Representational State Transfer (REST), and
remote procedure calls (RPC), as well as message-passing systems such as actors and
message queues.

Formats for Encoding Data
Programs usually work with data in (at least) two different representations:

1. In memory, data is kept in objects, structs, lists, arrays, hash tables, trees, and so
on. These data structures are optimized for efficient access and manipulation by
the CPU (typically using pointers).

2. When you want to write data to a file or send it over the network, you have to
encode it as some kind of self-contained sequence of bytes (for example, a JSON
document). Since a pointer wouldn’t make sense to any other process, this

112 | Chapter 4: Encoding and Evolution

onlyice

onlyice
数据有两种展现方式：
1. 为了给 CPU 操作，存放在内存中，比如作为 object, list, hash tables 等
2. 为了在网络上传输或者落入磁盘，以字节序列（self-contained sequence of bytes）展示，比如 JSON 文档

i. With the exception of some special cases, such as certain memory-mapped files or when operating directly
on compressed data (as described in “Column Compression” on page 97).

ii. Note that encoding has nothing to do with encryption. We don’t discuss encryption in this book.

sequence-of-bytes representation looks quite different from the data structures
that are normally used in memory.i

Thus, we need some kind of translation between the two representations. The trans‐
lation from the in-memory representation to a byte sequence is called encoding (also
known as serialization or marshalling), and the reverse is called decoding (parsing,
deserialization, unmarshalling).ii

Terminology clash

Serialization is unfortunately also used in the context of transac‐
tions (see Chapter 7), with a completely different meaning. To
avoid overloading the word we’ll stick with encoding in this book,
even though serialization is perhaps a more common term.

As this is such a common problem, there are a myriad different libraries and encod‐
ing formats to choose from. Let’s do a brief overview.

Language-Specific Formats
Many programming languages come with built-in support for encoding in-memory
objects into byte sequences. For example, Java has java.io.Serializable [1], Ruby
has Marshal [2], Python has pickle [3], and so on. Many third-party libraries also
exist, such as Kryo for Java [4].

These encoding libraries are very convenient, because they allow in-memory objects
to be saved and restored with minimal additional code. However, they also have a
number of deep problems:

• The encoding is often tied to a particular programming language, and reading
the data in another language is very difficult. If you store or transmit data in such
an encoding, you are committing yourself to your current programming lan‐
guage for potentially a very long time, and precluding integrating your systems
with those of other organizations (which may use different languages).

• In order to restore data in the same object types, the decoding process needs to
be able to instantiate arbitrary classes. This is frequently a source of security
problems [5]: if an attacker can get your application to decode an arbitrary byte
sequence, they can instantiate arbitrary classes, which in turn often allows them
to do terrible things such as remotely executing arbitrary code [6, 7].

Formats for Encoding Data | 113

onlyice

onlyice
语言内置的格式，比如 Java 的 java.io.Serializable，Python 的 pickle 等。

好处是特定语言下使用方便。

坏处：
1. 往往上能跨语言通用
2. 因为反序列化过程可以形成任意 class，有安全隐患，黑客可以修改序列化后的数据来攻击
3. 往往没有实现好的数据多版本能力
4. 序列化与反序列化的性能往往一般

所以上流行。

• Versioning data is often an afterthought in these libraries: as they are intended
for quick and easy encoding of data, they often neglect the inconvenient prob‐
lems of forward and backward compatibility.

• Efficiency (CPU time taken to encode or decode, and the size of the encoded
structure) is also often an afterthought. For example, Java’s built-in serialization
is notorious for its bad performance and bloated encoding [8].

For these reasons it’s generally a bad idea to use your language’s built-in encoding for
anything other than very transient purposes.

JSON, XML, and Binary Variants
Moving to standardized encodings that can be written and read by many program‐
ming languages, JSON and XML are the obvious contenders. They are widely known,
widely supported, and almost as widely disliked. XML is often criticized for being too
verbose and unnecessarily complicated [9]. JSON’s popularity is mainly due to its
built-in support in web browsers (by virtue of being a subset of JavaScript) and sim‐
plicity relative to XML. CSV is another popular language-independent format, albeit
less powerful.

JSON, XML, and CSV are textual formats, and thus somewhat human-readable
(although the syntax is a popular topic of debate). Besides the superficial syntactic
issues, they also have some subtle problems:

• There is a lot of ambiguity around the encoding of numbers. In XML and CSV,
you cannot distinguish between a number and a string that happens to consist of
digits (except by referring to an external schema). JSON distinguishes strings and
numbers, but it doesn’t distinguish integers and floating-point numbers, and it
doesn’t specify a precision.
This is a problem when dealing with large numbers; for example, integers greater
than 253 cannot be exactly represented in an IEEE 754 double-precision floating-
point number, so such numbers become inaccurate when parsed in a language
that uses floating-point numbers (such as JavaScript). An example of numbers
larger than 253 occurs on Twitter, which uses a 64-bit number to identify each
tweet. The JSON returned by Twitter’s API includes tweet IDs twice, once as a
JSON number and once as a decimal string, to work around the fact that the
numbers are not correctly parsed by JavaScript applications [10].

• JSON and XML have good support for Unicode character strings (i.e., human-
readable text), but they don’t support binary strings (sequences of bytes without
a character encoding). Binary strings are a useful feature, so people get around
this limitation by encoding the binary data as text using Base64. The schema is
then used to indicate that the value should be interpreted as Base64-encoded.
This works, but it’s somewhat hacky and increases the data size by 33%.

114 | Chapter 4: Encoding and Evolution

onlyice
标准化的编解码方式（对比于之前语言内置的方式）。流行的纯文本编码格式有 XML、JSON、CSV 等。

JSON 相对流行，因为是 JS 子集，在 web 中广泛使用。

XML 过于啰嗦和夊杂。

onlyice
但这类标准编解码方式也存在问题：

1. 类型系统上完善，比如 JSON 并上区分整数和浮点数，而且没指明精度。这样上同的库解出来的数字可能是上一样的，比如一个库用了 32 位浮点数，另一个库用了 64 位
2. JSON 和 XML 支持 Unicode 字符串，但是上支持二进制字符串。这样导致二进制字符串需要额外的编码，比如用 Base64 编码后再放入 JSON 中，增加了体积、影响了性能
3. XML 和 JSON 虽然都提供了额外的 schema（数据格式）支持，但使用者少，且相对夊杂。这导致上同代码对数据格式的解析可能上一致
4. CSV 连 schema 机制都没有，数据是什么格式全凭解析代码定

• There is optional schema support for both XML [11] and JSON [12]. These
schema languages are quite powerful, and thus quite complicated to learn and
implement. Use of XML schemas is fairly widespread, but many JSON-based
tools don’t bother using schemas. Since the correct interpretation of data (such
as numbers and binary strings) depends on information in the schema, applica‐
tions that don’t use XML/JSON schemas need to potentially hardcode the appro‐
priate encoding/decoding logic instead.

• CSV does not have any schema, so it is up to the application to define the mean‐
ing of each row and column. If an application change adds a new row or column,
you have to handle that change manually. CSV is also a quite vague format (what
happens if a value contains a comma or a newline character?). Although its
escaping rules have been formally specified [13], not all parsers implement them
correctly.

Despite these flaws, JSON, XML, and CSV are good enough for many purposes. It’s
likely that they will remain popular, especially as data interchange formats (i.e., for
sending data from one organization to another). In these situations, as long as people
agree on what the format is, it often doesn’t matter how pretty or efficient the format
is. The difficulty of getting different organizations to agree on anything outweighs
most other concerns.

Binary encoding
For data that is used only internally within your organization, there is less pressure to
use a lowest-common-denominator encoding format. For example, you could choose
a format that is more compact or faster to parse. For a small dataset, the gains are
negligible, but once you get into the terabytes, the choice of data format can have a
big impact.

JSON is less verbose than XML, but both still use a lot of space compared to binary
formats. This observation led to the development of a profusion of binary encodings
for JSON (MessagePack, BSON, BJSON, UBJSON, BISON, and Smile, to name a few)
and for XML (WBXML and Fast Infoset, for example). These formats have been
adopted in various niches, but none of them are as widely adopted as the textual ver‐
sions of JSON and XML.

Some of these formats extend the set of datatypes (e.g., distinguishing integers and
floating-point numbers, or adding support for binary strings), but otherwise they
keep the JSON/XML data model unchanged. In particular, since they don’t prescribe
a schema, they need to include all the object field names within the encoded data.
That is, in a binary encoding of the JSON document in Example 4-1, they will need to
include the strings userName, favoriteNumber, and interests somewhere.

Formats for Encoding Data | 115

onlyice
纯文本的编码格式虽然存在问题且性能上够好，但它们流行且在人群中 *达成了共识*，这是最重要的。

onlyice
有对 JSON / XML 的 binary 化尝试。但都上是太流行。

Example 4-1. Example record which we will encode in several binary formats in this
chapter

{
 "userName": "Martin",
 "favoriteNumber": 1337,
 "interests": ["daydreaming", "hacking"]
}

Let’s look at an example of MessagePack, a binary encoding for JSON. Figure 4-1
shows the byte sequence that you get if you encode the JSON document in
Example 4-1 with MessagePack [14]. The first few bytes are as follows:

1. The first byte, 0x83, indicates that what follows is an object (top four bits = 0x80)
with three fields (bottom four bits = 0x03). (In case you’re wondering what hap‐
pens if an object has more than 15 fields, so that the number of fields doesn’t fit
in four bits, it then gets a different type indicator, and the number of fields is
encoded in two or four bytes.)

2. The second byte, 0xa8, indicates that what follows is a string (top four bits =
0xa0) that is eight bytes long (bottom four bits = 0x08).

3. The next eight bytes are the field name userName in ASCII. Since the length was
indicated previously, there’s no need for any marker to tell us where the string
ends (or any escaping).

4. The next seven bytes encode the six-letter string value Martin with a prefix 0xa6,
and so on.

The binary encoding is 66 bytes long, which is only a little less than the 81 bytes taken
by the textual JSON encoding (with whitespace removed). All the binary encodings of
JSON are similar in this regard. It’s not clear whether such a small space reduction
(and perhaps a speedup in parsing) is worth the loss of human-readability.

In the following sections we will see how we can do much better, and encode the
same record in just 32 bytes.

116 | Chapter 4: Encoding and Evolution

onlyice
MessagePack 是 JSON 的一个 binary 的尝试。但它没有引入 schema，仅能将 JSON 文档的大小缩减很少部分，还损失了可读性。*上是好的例子*。

Figure 4-1. Example record (Example 4-1) encoded using MessagePack.

Thrift and Protocol Buffers
Apache Thrift [15] and Protocol Buffers (protobuf) [16] are binary encoding libraries
that are based on the same principle. Protocol Buffers was originally developed at
Google, Thrift was originally developed at Facebook, and both were made open
source in 2007–08 [17].

Both Thrift and Protocol Buffers require a schema for any data that is encoded. To
encode the data in Example 4-1 in Thrift, you would describe the schema in the
Thrift interface definition language (IDL) like this:

struct Person {
 1: required string userName,
 2: optional i64 favoriteNumber,
 3: optional list<string> interests
}

Formats for Encoding Data | 117

onlyice
Thrift 和 Protocol Buffers 是二进制编码格式中做得比较好的。

重点：

1. 引入了单独的 schema。序列化后的数据中上包含字段吊，因此缩减了体积
2. 自带代码生成工具，通过 schema 生成各语言的编解码代码，实现处理上的一致性

iii. Actually, it has three—BinaryProtocol, CompactProtocol, and DenseProtocol—although DenseProtocol
is only supported by the C++ implementation, so it doesn’t count as cross-language [18]. Besides those, it also
has two different JSON-based encoding formats [19]. What fun!

The equivalent schema definition for Protocol Buffers looks very similar:

message Person {
 required string user_name = 1;
 optional int64 favorite_number = 2;
 repeated string interests = 3;
}

Thrift and Protocol Buffers each come with a code generation tool that takes a
schema definition like the ones shown here, and produces classes that implement the
schema in various programming languages [18]. Your application code can call this
generated code to encode or decode records of the schema.

What does data encoded with this schema look like? Confusingly, Thrift has two dif‐
ferent binary encoding formats,iii called BinaryProtocol and CompactProtocol, respec‐
tively. Let’s look at BinaryProtocol first. Encoding Example 4-1 in that format takes
59 bytes, as shown in Figure 4-2 [19].

Figure 4-2. Example record encoded using Thrift’s BinaryProtocol.

118 | Chapter 4: Encoding and Evolution

Similarly to Figure 4-1, each field has a type annotation (to indicate whether it is a
string, integer, list, etc.) and, where required, a length indication (length of a string,
number of items in a list). The strings that appear in the data (“Martin”, “daydream‐
ing”, “hacking”) are also encoded as ASCII (or rather, UTF-8), similar to before.

The big difference compared to Figure 4-1 is that there are no field names (userName,
favoriteNumber, interests). Instead, the encoded data contains field tags, which are
numbers (1, 2, and 3). Those are the numbers that appear in the schema definition.
Field tags are like aliases for fields—they are a compact way of saying what field we’re
talking about, without having to spell out the field name.

The Thrift CompactProtocol encoding is semantically equivalent to BinaryProtocol,
but as you can see in Figure 4-3, it packs the same information into only 34 bytes. It
does this by packing the field type and tag number into a single byte, and by using
variable-length integers. Rather than using a full eight bytes for the number 1337, it is
encoded in two bytes, with the top bit of each byte used to indicate whether there are
still more bytes to come. This means numbers between –64 and 63 are encoded in
one byte, numbers between –8192 and 8191 are encoded in two bytes, etc. Bigger
numbers use more bytes.

Figure 4-3. Example record encoded using Thrift’s CompactProtocol.

Finally, Protocol Buffers (which has only one binary encoding format) encodes the
same data as shown in Figure 4-4. It does the bit packing slightly differently, but is

Formats for Encoding Data | 119

onlyice
编码后的数据，使用 field tag（编号）代替 field name（吊称），实现体积的压缩。

onlyice
Thrift 的 CompactProtocol 相对 BinaryProtocol 在对数字上做了进一步的压缩，使得小的数字用的字节数少，比如 -64 到 63 的整数只用 1 字节，-8192 到 8191 的整数用 2 字节。

otherwise very similar to Thrift’s CompactProtocol. Protocol Buffers fits the same
record in 33 bytes.

Figure 4-4. Example record encoded using Protocol Buffers.

One detail to note: in the schemas shown earlier, each field was marked either
required or optional, but this makes no difference to how the field is encoded
(nothing in the binary data indicates whether a field was required). The difference is
simply that required enables a runtime check that fails if the field is not set, which
can be useful for catching bugs.

Field tags and schema evolution
We said previously that schemas inevitably need to change over time. We call this
schema evolution. How do Thrift and Protocol Buffers handle schema changes while
keeping backward and forward compatibility?

As you can see from the examples, an encoded record is just the concatenation of its
encoded fields. Each field is identified by its tag number (the numbers 1, 2, 3 in the
sample schemas) and annotated with a datatype (e.g., string or integer). If a field
value is not set, it is simply omitted from the encoded record. From this you can see
that field tags are critical to the meaning of the encoded data. You can change the
name of a field in the schema, since the encoded data never refers to field names, but
you cannot change a field’s tag, since that would make all existing encoded data
invalid.

120 | Chapter 4: Encoding and Evolution

onlyice

onlyice
每个字段都带有 tag number，通过 tag number 唯一表示一个字段。所以：

- 字段吊可以修改
- 如果客户端已经发布，大多数情况下上能修改字段的类型，但可能可以修改字段的精度，比如从 int 变成 big int。但实际使用时要多加小心，避免精度丢失
- 如果新增一个 field，可以做到：
 - 前向兼容：老代码读新数据时，忽略新增加的字段即可
 - 后向兼容：新代码读老数据时，该数据所有的字段新代码都理解
- 删除一个字段时，只能删除 optional 字段。有些实践认为字段都是 optional 较灵活

You can add new fields to the schema, provided that you give each field a new tag
number. If old code (which doesn’t know about the new tag numbers you added)
tries to read data written by new code, including a new field with a tag number it
doesn’t recognize, it can simply ignore that field. The datatype annotation allows the
parser to determine how many bytes it needs to skip. This maintains forward com‐
patibility: old code can read records that were written by new code.

What about backward compatibility? As long as each field has a unique tag number,
new code can always read old data, because the tag numbers still have the same
meaning. The only detail is that if you add a new field, you cannot make it required.
If you were to add a field and make it required, that check would fail if new code read
data written by old code, because the old code will not have written the new field that
you added. Therefore, to maintain backward compatibility, every field you add after
the initial deployment of the schema must be optional or have a default value.

Removing a field is just like adding a field, with backward and forward compatibility
concerns reversed. That means you can only remove a field that is optional (a
required field can never be removed), and you can never use the same tag number
again (because you may still have data written somewhere that includes the old tag
number, and that field must be ignored by new code).

Datatypes and schema evolution
What about changing the datatype of a field? That may be possible—check the docu‐
mentation for details—but there is a risk that values will lose precision or get trunca‐
ted. For example, say you change a 32-bit integer into a 64-bit integer. New code can
easily read data written by old code, because the parser can fill in any missing bits
with zeros. However, if old code reads data written by new code, the old code is still
using a 32-bit variable to hold the value. If the decoded 64-bit value won’t fit in 32
bits, it will be truncated.

A curious detail of Protocol Buffers is that it does not have a list or array datatype,
but instead has a repeated marker for fields (which is a third option alongside
required and optional). As you can see in Figure 4-4, the encoding of a repeated
field is just what it says on the tin: the same field tag simply appears multiple times in
the record. This has the nice effect that it’s okay to change an optional (single-
valued) field into a repeated (multi-valued) field. New code reading old data sees a
list with zero or one elements (depending on whether the field was present); old code
reading new data sees only the last element of the list.

Thrift has a dedicated list datatype, which is parameterized with the datatype of the
list elements. This does not allow the same evolution from single-valued to multi-
valued as Protocol Buffers does, but it has the advantage of supporting nested lists.

Formats for Encoding Data | 121

onlyice
PB 的 repeated 设计得有意思。可以把一个非 repeated 字段变成 repeated。

新代码看到老数据，会理解成只有一个元素的数组。
而老代码看到新数据，会只使用数组中最后一个元素。

Avro
Apache Avro [20] is another binary encoding format that is interestingly different
from Protocol Buffers and Thrift. It was started in 2009 as a subproject of Hadoop, as
a result of Thrift not being a good fit for Hadoop’s use cases [21].

Avro also uses a schema to specify the structure of the data being encoded. It has two
schema languages: one (Avro IDL) intended for human editing, and one (based on
JSON) that is more easily machine-readable.

Our example schema, written in Avro IDL, might look like this:

record Person {
 string userName;
 union { null, long } favoriteNumber = null;
 array<string> interests;
}

The equivalent JSON representation of that schema is as follows:

{
 "type": "record",
 "name": "Person",
 "fields": [
 {"name": "userName", "type": "string"},
 {"name": "favoriteNumber", "type": ["null", "long"], "default": null},
 {"name": "interests", "type": {"type": "array", "items": "string"}}
]
}

First of all, notice that there are no tag numbers in the schema. If we encode our
example record (Example 4-1) using this schema, the Avro binary encoding is just 32
bytes long—the most compact of all the encodings we have seen. The breakdown of
the encoded byte sequence is shown in Figure 4-5.

If you examine the byte sequence, you can see that there is nothing to identify fields
or their datatypes. The encoding simply consists of values concatenated together. A
string is just a length prefix followed by UTF-8 bytes, but there’s nothing in the enco‐
ded data that tells you that it is a string. It could just as well be an integer, or some‐
thing else entirely. An integer is encoded using a variable-length encoding (the same
as Thrift’s CompactProtocol).

122 | Chapter 4: Encoding and Evolution

Figure 4-5. Example record encoded using Avro.

To parse the binary data, you go through the fields in the order that they appear in
the schema and use the schema to tell you the datatype of each field. This means that
the binary data can only be decoded correctly if the code reading the data is using the
exact same schema as the code that wrote the data. Any mismatch in the schema
between the reader and the writer would mean incorrectly decoded data.

So, how does Avro support schema evolution?

The writer’s schema and the reader’s schema
With Avro, when an application wants to encode some data (to write it to a file or
database, to send it over the network, etc.), it encodes the data using whatever version
of the schema it knows about—for example, that schema may be compiled into the
application. This is known as the writer’s schema.

When an application wants to decode some data (read it from a file or database,
receive it from the network, etc.), it is expecting the data to be in some schema, which
is known as the reader’s schema. That is the schema the application code is relying on
—code may have been generated from that schema during the application’s build
process.

The key idea with Avro is that the writer’s schema and the reader’s schema don’t have
to be the same—they only need to be compatible. When data is decoded (read), the

Formats for Encoding Data | 123

onlyice
Avro 在编码上更激进，去掉了 tag number 和类型，只保留每个 field 的长度，使得体积更小。

但这也意味着，reader 解码数据时，需要同时知道 writer's schema 和 reader's schema。这样它可以判断两个 schema 是否兼容，它要怎样去读。

onlyice

Avro library resolves the differences by looking at the writer’s schema and the
reader’s schema side by side and translating the data from the writer’s schema into
the reader’s schema. The Avro specification [20] defines exactly how this resolution
works, and it is illustrated in Figure 4-6.

For example, it’s no problem if the writer’s schema and the reader’s schema have
their fields in a different order, because the schema resolution matches up the fields
by field name. If the code reading the data encounters a field that appears in the
writer’s schema but not in the reader’s schema, it is ignored. If the code reading the
data expects some field, but the writer’s schema does not contain a field of that name,
it is filled in with a default value declared in the reader’s schema.

Figure 4-6. An Avro reader resolves differences between the writer’s schema and the
reader’s schema.

Schema evolution rules
With Avro, forward compatibility means that you can have a new version of the
schema as writer and an old version of the schema as reader. Conversely, backward
compatibility means that you can have a new version of the schema as reader and an
old version as writer.

To maintain compatibility, you may only add or remove a field that has a default
value. (The field favoriteNumber in our Avro schema has a default value of null.)
For example, say you add a field with a default value, so this new field exists in the
new schema but not the old one. When a reader using the new schema reads a record
written with the old schema, the default value is filled in for the missing field.

If you were to add a field that has no default value, new readers wouldn’t be able to
read data written by old writers, so you would break backward compatibility. If you
were to remove a field that has no default value, old readers wouldn’t be able to read
data written by new writers, so you would break forward compatibility.

124 | Chapter 4: Encoding and Evolution

onlyice
Avro 做 schema evolution 的原则是只添加或者删除有默认值的字段。

它的字段的默认值估计需要显示地指定，上像 PB 一样有隐式的默认值。

iv. To be precise, the default value must be of the type of the first branch of the union, although this is a
specific limitation of Avro, not a general feature of union types.

In some programming languages, null is an acceptable default for any variable, but
this is not the case in Avro: if you want to allow a field to be null, you have to use a
union type. For example, union { null, long, string } field; indicates that
field can be a number, or a string, or null. You can only use null as a default value if
it is one of the branches of the union.iv This is a little more verbose than having every‐
thing nullable by default, but it helps prevent bugs by being explicit about what can
and cannot be null [22].

Consequently, Avro doesn’t have optional and required markers in the same way as
Protocol Buffers and Thrift do (it has union types and default values instead).

Changing the datatype of a field is possible, provided that Avro can convert the type.
Changing the name of a field is possible but a little tricky: the reader’s schema can
contain aliases for field names, so it can match an old writer’s schema field names
against the aliases. This means that changing a field name is backward compatible but
not forward compatible. Similarly, adding a branch to a union type is backward com‐
patible but not forward compatible.

But what is the writer’s schema?
There is an important question that we’ve glossed over so far: how does the reader
know the writer’s schema with which a particular piece of data was encoded? We
can’t just include the entire schema with every record, because the schema would
likely be much bigger than the encoded data, making all the space savings from the
binary encoding futile.

The answer depends on the context in which Avro is being used. To give a few exam‐
ples:

Large file with lots of records
A common use for Avro—especially in the context of Hadoop—is for storing a
large file containing millions of records, all encoded with the same schema. (We
will discuss this kind of situation in Chapter 10.) In this case, the writer of that
file can just include the writer’s schema once at the beginning of the file. Avro
specifies a file format (object container files) to do this.

Database with individually written records
In a database, different records may be written at different points in time using
different writer’s schemas—you cannot assume that all the records will have the
same schema. The simplest solution is to include a version number at the begin‐
ning of every encoded record, and to keep a list of schema versions in your data‐

Formats for Encoding Data | 125

onlyice
Avro 的模式使得 reader 需要知道 write's schema。这是因为 Avro 一开始是设计给 Hadoop 用的。它的典型使用场景：

1. large fie with lots of records。这种情况下，为这个大文件同时存放一个 schema 文件并上浪费
2. Databse with individually written records。这种情况下，可能有额外的表存放上同版本的 schema，再将相应的 record 与 schema version 关联起来
3. Sending records over a network connection。这种情况下，通讯的两端需要先协商好彼此的 schema，在后续的通讯中始终用相同的 schema

base. A reader can fetch a record, extract the version number, and then fetch the
writer’s schema for that version number from the database. Using that writer’s
schema, it can decode the rest of the record. (Espresso [23] works this way, for
example.)

Sending records over a network connection
When two processes are communicating over a bidirectional network connec‐
tion, they can negotiate the schema version on connection setup and then use
that schema for the lifetime of the connection. The Avro RPC protocol (see
“Dataflow Through Services: REST and RPC” on page 131) works like this.

A database of schema versions is a useful thing to have in any case, since it acts as
documentation and gives you a chance to check schema compatibility [24]. As the
version number, you could use a simple incrementing integer, or you could use a
hash of the schema.

Dynamically generated schemas
One advantage of Avro’s approach, compared to Protocol Buffers and Thrift, is that
the schema doesn’t contain any tag numbers. But why is this important? What’s the
problem with keeping a couple of numbers in the schema?

The difference is that Avro is friendlier to dynamically generated schemas. For exam‐
ple, say you have a relational database whose contents you want to dump to a file, and
you want to use a binary format to avoid the aforementioned problems with textual
formats (JSON, CSV, SQL). If you use Avro, you can fairly easily generate an Avro
schema (in the JSON representation we saw earlier) from the relational schema and
encode the database contents using that schema, dumping it all to an Avro object
container file [25]. You generate a record schema for each database table, and each
column becomes a field in that record. The column name in the database maps to the
field name in Avro.

Now, if the database schema changes (for example, a table has one column added and
one column removed), you can just generate a new Avro schema from the updated
database schema and export data in the new Avro schema. The data export process
does not need to pay any attention to the schema change—it can simply do the
schema conversion every time it runs. Anyone who reads the new data files will see
that the fields of the record have changed, but since the fields are identified by name,
the updated writer’s schema can still be matched up with the old reader’s schema.

By contrast, if you were using Thrift or Protocol Buffers for this purpose, the field
tags would likely have to be assigned by hand: every time the database schema
changes, an administrator would have to manually update the mapping from data‐
base column names to field tags. (It might be possible to automate this, but the
schema generator would have to be very careful to not assign previously used field

126 | Chapter 4: Encoding and Evolution

onlyice
Avro 通过 schema 比对来解码的特性，使得它适应于动态生成的 schema，比如数据库表结构生成的 schema。

这使得 schema 做变更时，Avro 上需要像 Thrift 或 PB 一样精心维护 tag number，带来了便利。

tags.) This kind of dynamically generated schema simply wasn’t a design goal of
Thrift or Protocol Buffers, whereas it was for Avro.

Code generation and dynamically typed languages
Thrift and Protocol Buffers rely on code generation: after a schema has been defined,
you can generate code that implements this schema in a programming language of
your choice. This is useful in statically typed languages such as Java, C++, or C#,
because it allows efficient in-memory structures to be used for decoded data, and it
allows type checking and autocompletion in IDEs when writing programs that access
the data structures.

In dynamically typed programming languages such as JavaScript, Ruby, or Python,
there is not much point in generating code, since there is no compile-time type
checker to satisfy. Code generation is often frowned upon in these languages, since
they otherwise avoid an explicit compilation step. Moreover, in the case of a dynami‐
cally generated schema (such as an Avro schema generated from a database table),
code generation is an unnecessarily obstacle to getting to the data.

Avro provides optional code generation for statically typed programming languages,
but it can be used just as well without any code generation. If you have an object con‐
tainer file (which embeds the writer’s schema), you can simply open it using the Avro
library and look at the data in the same way as you could look at a JSON file. The file
is self-describing since it includes all the necessary metadata.

This property is especially useful in conjunction with dynamically typed data pro‐
cessing languages like Apache Pig [26]. In Pig, you can just open some Avro files,
start analyzing them, and write derived datasets to output files in Avro format
without even thinking about schemas.

The Merits of Schemas
As we saw, Protocol Buffers, Thrift, and Avro all use a schema to describe a binary
encoding format. Their schema languages are much simpler than XML Schema or
JSON Schema, which support much more detailed validation rules (e.g., “the string
value of this field must match this regular expression” or “the integer value of this
field must be between 0 and 100”). As Protocol Buffers, Thrift, and Avro are simpler
to implement and simpler to use, they have grown to support a fairly wide range of
programming languages.

The ideas on which these encodings are based are by no means new. For example,
they have a lot in common with ASN.1, a schema definition language that was first
standardized in 1984 [27]. It was used to define various network protocols, and its
binary encoding (DER) is still used to encode SSL certificates (X.509), for example
[28]. ASN.1 supports schema evolution using tag numbers, similar to Protocol Buf‐

Formats for Encoding Data | 127

onlyice
Thrift 和 PB 依赖于代码生成。代码生成对静态类型语言（比如 Java、C++）有益，可以做编译期检查及辅助 IDE。但对动态语言而言没有这个益处，显得啰嗦。

Avro 上依赖代码生成。如果你拿到它的 object container file，里面即包含了数据也包含了 schema，使用者可以像读一个 JSON 一样去读取它，就非常方便。

fers and Thrift [29]. However, it’s also very complex and badly documented, so
ASN.1 is probably not a good choice for new applications.

Many data systems also implement some kind of proprietary binary encoding for
their data. For example, most relational databases have a network protocol over
which you can send queries to the database and get back responses. Those protocols
are generally specific to a particular database, and the database vendor provides a
driver (e.g., using the ODBC or JDBC APIs) that decodes responses from the data‐
base’s network protocol into in-memory data structures.

So, we can see that although textual data formats such as JSON, XML, and CSV are
widespread, binary encodings based on schemas are also a viable option. They have a
number of nice properties:

• They can be much more compact than the various “binary JSON” variants, since
they can omit field names from the encoded data.

• The schema is a valuable form of documentation, and because the schema is
required for decoding, you can be sure that it is up to date (whereas manually
maintained documentation may easily diverge from reality).

• Keeping a database of schemas allows you to check forward and backward com‐
patibility of schema changes, before anything is deployed.

• For users of statically typed programming languages, the ability to generate code
from the schema is useful, since it enables type checking at compile time.

In summary, schema evolution allows the same kind of flexibility as schemaless/
schema-on-read JSON databases provide (see “Schema flexibility in the document
model” on page 39), while also providing better guarantees about your data and bet‐
ter tooling.

Modes of Dataflow
At the beginning of this chapter we said that whenever you want to send some data to
another process with which you don’t share memory—for example, whenever you
want to send data over the network or write it to a file—you need to encode it as a
sequence of bytes. We then discussed a variety of different encodings for doing this.

We talked about forward and backward compatibility, which are important for evolv‐
ability (making change easy by allowing you to upgrade different parts of your system
independently, and not having to change everything at once). Compatibility is a rela‐
tionship between one process that encodes the data, and another process that decodes
it.

128 | Chapter 4: Encoding and Evolution

onlyice
二进制编码格式的好处总结。

That’s a fairly abstract idea—there are many ways data can flow from one process to
another. Who encodes the data, and who decodes it? In the rest of this chapter we
will explore some of the most common ways how data flows between processes:

• Via databases (see “Dataflow Through Databases” on page 129)
• Via service calls (see “Dataflow Through Services: REST and RPC” on page 131)
• Via asynchronous message passing (see “Message-Passing Dataflow” on page 136)

Dataflow Through Databases
In a database, the process that writes to the database encodes the data, and the pro‐
cess that reads from the database decodes it. There may just be a single process
accessing the database, in which case the reader is simply a later version of the same
process—in that case you can think of storing something in the database as sending a
message to your future self.

Backward compatibility is clearly necessary here; otherwise your future self won’t be
able to decode what you previously wrote.

In general, it’s common for several different processes to be accessing a database at
the same time. Those processes might be several different applications or services, or
they may simply be several instances of the same service (running in parallel for scal‐
ability or fault tolerance). Either way, in an environment where the application is
changing, it is likely that some processes accessing the database will be running newer
code and some will be running older code—for example because a new version is cur‐
rently being deployed in a rolling upgrade, so some instances have been updated
while others haven’t yet.

This means that a value in the database may be written by a newer version of the
code, and subsequently read by an older version of the code that is still running.
Thus, forward compatibility is also often required for databases.

However, there is an additional snag. Say you add a field to a record schema, and the
newer code writes a value for that new field to the database. Subsequently, an older
version of the code (which doesn’t yet know about the new field) reads the record,
updates it, and writes it back. In this situation, the desirable behavior is usually for
the old code to keep the new field intact, even though it couldn’t be interpreted.

The encoding formats discussed previously support such preservation of unknown
fields, but sometimes you need to take care at an application level, as illustrated in
Figure 4-7. For example, if you decode a database value into model objects in the
application, and later reencode those model objects, the unknown field might be lost
in that translation process. Solving this is not a hard problem; you just need to be
aware of it.

Modes of Dataflow | 129

onlyice
数据在进程间流转，上只是通过转换为字节序列（byte sequence）的方式。这一小节描述其他三种方式：

- 通过数据库（一方写，另一方在未来某个时间读）
- 通过朊务间调用（一方发起，另一方马上回夊）
- 通过异步的消息传递（一方发起，另一方稊候处理）

onlyice
通过数据库来交换的数据。数据库往往被多个应用一起读写，也需要考虑前向、后向兼容。

数据做 migration 的成本可能很大（比如对一个非常大的表）。

新增加的字段如果以 null 为默认值，大部分数据库在 migration 时可以做到上重写整个表。

数据在做存档（archival storage）时，存档下来的数据快照是按当时的 schema 来生成的，因此像 Avro 这种自带 schema 的格式就非常好用。

v. Except for MySQL, which often rewrites an entire table even though it is not strictly necessary, as men‐
tioned in “Schema flexibility in the document model” on page 39.

Figure 4-7. When an older version of the application updates data previously written
by a newer version of the application, data may be lost if you’re not careful.

Different values written at different times
A database generally allows any value to be updated at any time. This means that
within a single database you may have some values that were written five milli‐
seconds ago, and some values that were written five years ago.

When you deploy a new version of your application (of a server-side application, at
least), you may entirely replace the old version with the new version within a few
minutes. The same is not true of database contents: the five-year-old data will still be
there, in the original encoding, unless you have explicitly rewritten it since then. This
observation is sometimes summed up as data outlives code.

Rewriting (migrating) data into a new schema is certainly possible, but it’s an expen‐
sive thing to do on a large dataset, so most databases avoid it if possible. Most rela‐
tional databases allow simple schema changes, such as adding a new column with a
null default value, without rewriting existing data.v When an old row is read, the
database fills in nulls for any columns that are missing from the encoded data on
disk. LinkedIn’s document database Espresso uses Avro for storage, allowing it to use
Avro’s schema evolution rules [23].

130 | Chapter 4: Encoding and Evolution

Schema evolution thus allows the entire database to appear as if it was encoded with a
single schema, even though the underlying storage may contain records encoded with
various historical versions of the schema.

Archival storage
Perhaps you take a snapshot of your database from time to time, say for backup pur‐
poses or for loading into a data warehouse (see “Data Warehousing” on page 91). In
this case, the data dump will typically be encoded using the latest schema, even if the
original encoding in the source database contained a mixture of schema versions
from different eras. Since you’re copying the data anyway, you might as well encode
the copy of the data consistently.

As the data dump is written in one go and is thereafter immutable, formats like Avro
object container files are a good fit. This is also a good opportunity to encode the data
in an analytics-friendly column-oriented format such as Parquet (see “Column Com‐
pression” on page 97).

In Chapter 10 we will talk more about using data in archival storage.

Dataflow Through Services: REST and RPC
When you have processes that need to communicate over a network, there are a few
different ways of arranging that communication. The most common arrangement is
to have two roles: clients and servers. The servers expose an API over the network,
and the clients can connect to the servers to make requests to that API. The API
exposed by the server is known as a service.

The web works this way: clients (web browsers) make requests to web servers, mak‐
ing GET requests to download HTML, CSS, JavaScript, images, etc., and making POST
requests to submit data to the server. The API consists of a standardized set of proto‐
cols and data formats (HTTP, URLs, SSL/TLS, HTML, etc.). Because web browsers,
web servers, and website authors mostly agree on these standards, you can use any
web browser to access any website (at least in theory!).

Web browsers are not the only type of client. For example, a native app running on a
mobile device or a desktop computer can also make network requests to a server, and
a client-side JavaScript application running inside a web browser can use
XMLHttpRequest to become an HTTP client (this technique is known as Ajax [30]).
In this case, the server’s response is typically not HTML for displaying to a human,
but rather data in an encoding that is convenient for further processing by the client-
side application code (such as JSON). Although HTTP may be used as the transport
protocol, the API implemented on top is application-specific, and the client and
server need to agree on the details of that API.

Modes of Dataflow | 131

Moreover, a server can itself be a client to another service (for example, a typical web
app server acts as client to a database). This approach is often used to decompose a
large application into smaller services by area of functionality, such that one service
makes a request to another when it requires some functionality or data from that
other service. This way of building applications has traditionally been called a service-
oriented architecture (SOA), more recently refined and rebranded as microservices
architecture [31, 32].

In some ways, services are similar to databases: they typically allow clients to submit
and query data. However, while databases allow arbitrary queries using the query lan‐
guages we discussed in Chapter 2, services expose an application-specific API that
only allows inputs and outputs that are predetermined by the business logic (applica‐
tion code) of the service [33]. This restriction provides a degree of encapsulation:
services can impose fine-grained restrictions on what clients can and cannot do.

A key design goal of a service-oriented/microservices architecture is to make the
application easier to change and maintain by making services independently deploya‐
ble and evolvable. For example, each service should be owned by one team, and that
team should be able to release new versions of the service frequently, without having
to coordinate with other teams. In other words, we should expect old and new ver‐
sions of servers and clients to be running at the same time, and so the data encoding
used by servers and clients must be compatible across versions of the service API—
precisely what we’ve been talking about in this chapter.

Web services
When HTTP is used as the underlying protocol for talking to the service, it is called a
web service. This is perhaps a slight misnomer, because web services are not only used
on the web, but in several different contexts. For example:

1. A client application running on a user’s device (e.g., a native app on a mobile
device, or JavaScript web app using Ajax) making requests to a service over
HTTP. These requests typically go over the public internet.

2. One service making requests to another service owned by the same organization,
often located within the same datacenter, as part of a service-oriented/microser‐
vices architecture. (Software that supports this kind of use case is sometimes
called middleware.)

3. One service making requests to a service owned by a different organization, usu‐
ally via the internet. This is used for data exchange between different organiza‐
tions’ backend systems. This category includes public APIs provided by online
services, such as credit card processing systems, or OAuth for shared access to
user data.

132 | Chapter 4: Encoding and Evolution

onlyice
Web service 典型场景：
1. 用户设备中的客户端发起请求到朊务端（一般在公网上）
2. 互联网公司内部朊务间互相调用（一般在数据中心中）
3. 调用其他组织提供的公开朊务，比如 Google 的 API

onlyice
SOA 或微朊务架构的一大目的是，把业务逻辑拆分成内聚的一个个模块，然后这些模块可以独立地部署和升级。

vi. Even within each camp there are plenty of arguments. For example, HATEOAS (hypermedia as the engine
of application state), often provokes discussions [35].

vii. Despite the similarity of acronyms, SOAP is not a requirement for SOA. SOAP is a particular technology,
whereas SOA is a general approach to building systems.

There are two popular approaches to web services: REST and SOAP. They are almost
diametrically opposed in terms of philosophy, and often the subject of heated debate
among their respective proponents.vi

REST is not a protocol, but rather a design philosophy that builds upon the principles
of HTTP [34, 35]. It emphasizes simple data formats, using URLs for identifying
resources and using HTTP features for cache control, authentication, and content
type negotiation. REST has been gaining popularity compared to SOAP, at least in
the context of cross-organizational service integration [36], and is often associated
with microservices [31]. An API designed according to the principles of REST is
called RESTful.

By contrast, SOAP is an XML-based protocol for making network API requests.vii

Although it is most commonly used over HTTP, it aims to be independent from
HTTP and avoids using most HTTP features. Instead, it comes with a sprawling and
complex multitude of related standards (the web service framework, known as WS-*)
that add various features [37].

The API of a SOAP web service is described using an XML-based language called the
Web Services Description Language, or WSDL. WSDL enables code generation so
that a client can access a remote service using local classes and method calls (which
are encoded to XML messages and decoded again by the framework). This is useful in
statically typed programming languages, but less so in dynamically typed ones (see
“Code generation and dynamically typed languages” on page 127).

As WSDL is not designed to be human-readable, and as SOAP messages are often too
complex to construct manually, users of SOAP rely heavily on tool support, code
generation, and IDEs [38]. For users of programming languages that are not sup‐
ported by SOAP vendors, integration with SOAP services is difficult.

Even though SOAP and its various extensions are ostensibly standardized, interoper‐
ability between different vendors’ implementations often causes problems [39]. For
all of these reasons, although SOAP is still used in many large enterprises, it has fallen
out of favor in most smaller companies.

RESTful APIs tend to favor simpler approaches, typically involving less code genera‐
tion and automated tooling. A definition format such as OpenAPI, also known as
Swagger [40], can be used to describe RESTful APIs and produce documentation.

Modes of Dataflow | 133

onlyice
这段是对 REST 简要的定义。

onlyice
REST 是一种设计风格，而 SOUP 是一套以 XML 为基础的协议。它上依赖于 HTTP 特性，上需要一定使用 HTTP 传输。

但它笨重，难以手工构建，需要工具、库、IDE 支持，使其被取代。

The problems with remote procedure calls (RPCs)
Web services are merely the latest incarnation of a long line of technologies for mak‐
ing API requests over a network, many of which received a lot of hype but have seri‐
ous problems. Enterprise JavaBeans (EJB) and Java’s Remote Method Invocation
(RMI) are limited to Java. The Distributed Component Object Model (DCOM) is
limited to Microsoft platforms. The Common Object Request Broker Architecture
(CORBA) is excessively complex, and does not provide backward or forward compat‐
ibility [41].

All of these are based on the idea of a remote procedure call (RPC), which has been
around since the 1970s [42]. The RPC model tries to make a request to a remote net‐
work service look the same as calling a function or method in your programming lan‐
guage, within the same process (this abstraction is called location transparency).
Although RPC seems convenient at first, the approach is fundamentally flawed [43,
44]. A network request is very different from a local function call:

• A local function call is predictable and either succeeds or fails, depending only on
parameters that are under your control. A network request is unpredictable: the
request or response may be lost due to a network problem, or the remote
machine may be slow or unavailable, and such problems are entirely outside of
your control. Network problems are common, so you have to anticipate them,
for example by retrying a failed request.

• A local function call either returns a result, or throws an exception, or never
returns (because it goes into an infinite loop or the process crashes). A network
request has another possible outcome: it may return without a result, due to a
timeout. In that case, you simply don’t know what happened: if you don’t get a
response from the remote service, you have no way of knowing whether the
request got through or not. (We discuss this issue in more detail in Chapter 8.)

• If you retry a failed network request, it could happen that the requests are
actually getting through, and only the responses are getting lost. In that case,
retrying will cause the action to be performed multiple times, unless you build a
mechanism for deduplication (idempotence) into the protocol. Local function
calls don’t have this problem. (We discuss idempotence in more detail in Chap‐
ter 11.)

• Every time you call a local function, it normally takes about the same time to exe‐
cute. A network request is much slower than a function call, and its latency is
also wildly variable: at good times it may complete in less than a millisecond, but
when the network is congested or the remote service is overloaded it may take
many seconds to do exactly the same thing.

• When you call a local function, you can efficiently pass it references (pointers) to
objects in local memory. When you make a network request, all those parameters

134 | Chapter 4: Encoding and Evolution

onlyice
远程过程调用（RPC）的目标是，让请求远程朊务的过程，看起来跟调用一个本地函数一样。

onlyice
原始的 RPC 的理念是有缺陷的，因为网络请求与本地函数调用差别太大。

比如网络请求会超时、会丢包，导致你上知道你的请求在朊务端上实际做了没有。

need to be encoded into a sequence of bytes that can be sent over the network.
That’s okay if the parameters are primitives like numbers or strings, but quickly
becomes problematic with larger objects.

• The client and the service may be implemented in different programming lan‐
guages, so the RPC framework must translate datatypes from one language into
another. This can end up ugly, since not all languages have the same types—
recall JavaScript’s problems with numbers greater than 253, for example (see
“JSON, XML, and Binary Variants” on page 114). This problem doesn’t exist in a
single process written in a single language.

All of these factors mean that there’s no point trying to make a remote service look
too much like a local object in your programming language, because it’s a fundamen‐
tally different thing. Part of the appeal of REST is that it doesn’t try to hide the fact
that it’s a network protocol (although this doesn’t seem to stop people from building
RPC libraries on top of REST).

Current directions for RPC
Despite all these problems, RPC isn’t going away. Various RPC frameworks have
been built on top of all the encodings mentioned in this chapter: for example, Thrift
and Avro come with RPC support included, gRPC is an RPC implementation using
Protocol Buffers, Finagle also uses Thrift, and Rest.li uses JSON over HTTP.

This new generation of RPC frameworks is more explicit about the fact that a remote
request is different from a local function call. For example, Finagle and Rest.li use
futures (promises) to encapsulate asynchronous actions that may fail. Futures also
simplify situations where you need to make requests to multiple services in parallel,
and combine their results [45]. gRPC supports streams, where a call consists of not
just one request and one response, but a series of requests and responses over time
[46].

Some of these frameworks also provide service discovery—that is, allowing a client to
find out at which IP address and port number it can find a particular service. We will
return to this topic in “Request Routing” on page 214.

Custom RPC protocols with a binary encoding format can achieve better perfor‐
mance than something generic like JSON over REST. However, a RESTful API has
other significant advantages: it is good for experimentation and debugging (you can
simply make requests to it using a web browser or the command-line tool curl,
without any code generation or software installation), it is supported by all main‐
stream programming languages and platforms, and there is a vast ecosystem of tools
available (servers, caches, load balancers, proxies, firewalls, monitoring, debugging
tools, testing tools, etc.).

Modes of Dataflow | 135

onlyice
目前的 RPC 框架解决了之前一些缺点：

- 使用编程语言的异步特性（比如 futures / promises）来更好地表达网络请求的异步性、成功失败
- 有些使用二进制格式（比如 gRPC 使用 PB）来解决数据类型模糊的问题
- 有些内建了朊务吊机制，方便 server 端做请求的路由

onlyice
RESTful API 相比二进制格式的优势：

- 方便构造请求，上太依赖工具或代码生成
- 主流编程语言都支持
- Web 生态中的工具都支持，比如缓存、代理、防火墙等等

For these reasons, REST seems to be the predominant style for public APIs. The main
focus of RPC frameworks is on requests between services owned by the same organi‐
zation, typically within the same datacenter.

Data encoding and evolution for RPC
For evolvability, it is important that RPC clients and servers can be changed and
deployed independently. Compared to data flowing through databases (as described
in the last section), we can make a simplifying assumption in the case of dataflow
through services: it is reasonable to assume that all the servers will be updated first,
and all the clients second. Thus, you only need backward compatibility on requests,
and forward compatibility on responses.

The backward and forward compatibility properties of an RPC scheme are inherited
from whatever encoding it uses:

• Thrift, gRPC (Protocol Buffers), and Avro RPC can be evolved according to the
compatibility rules of the respective encoding format.

• In SOAP, requests and responses are specified with XML schemas. These can be
evolved, but there are some subtle pitfalls [47].

• RESTful APIs most commonly use JSON (without a formally specified schema)
for responses, and JSON or URI-encoded/form-encoded request parameters for
requests. Adding optional request parameters and adding new fields to response
objects are usually considered changes that maintain compatibility.

Service compatibility is made harder by the fact that RPC is often used for communi‐
cation across organizational boundaries, so the provider of a service often has no
control over its clients and cannot force them to upgrade. Thus, compatibility needs
to be maintained for a long time, perhaps indefinitely. If a compatibility-breaking
change is required, the service provider often ends up maintaining multiple versions
of the service API side by side.

There is no agreement on how API versioning should work (i.e., how a client can
indicate which version of the API it wants to use [48]). For RESTful APIs, common
approaches are to use a version number in the URL or in the HTTP Accept header.
For services that use API keys to identify a particular client, another option is to store
a client’s requested API version on the server and to allow this version selection to be
updated through a separate administrative interface [49].

Message-Passing Dataflow
We have been looking at the different ways encoded data flows from one process to
another. So far, we’ve discussed REST and RPC (where one process sends a request
over the network to another process and expects a response as quickly as possible),

136 | Chapter 4: Encoding and Evolution

onlyice
Client-server 模型中，一般 server 会先升级，client 后升级。这意味着需要考虑：

- 向前兼容：server 对旧的数据兼容
- 向后兼容：client 对新的数据兼容

and databases (where one process writes encoded data, and another process reads it
again sometime in the future).

In this final section, we will briefly look at asynchronous message-passing systems,
which are somewhere between RPC and databases. They are similar to RPC in that a
client’s request (usually called a message) is delivered to another process with low
latency. They are similar to databases in that the message is not sent via a direct net‐
work connection, but goes via an intermediary called a message broker (also called a
message queue or message-oriented middleware), which stores the message temporar‐
ily.

Using a message broker has several advantages compared to direct RPC:

• It can act as a buffer if the recipient is unavailable or overloaded, and thus
improve system reliability.

• It can automatically redeliver messages to a process that has crashed, and thus
prevent messages from being lost.

• It avoids the sender needing to know the IP address and port number of the
recipient (which is particularly useful in a cloud deployment where virtual
machines often come and go).

• It allows one message to be sent to several recipients.
• It logically decouples the sender from the recipient (the sender just publishes

messages and doesn’t care who consumes them).

However, a difference compared to RPC is that message-passing communication is
usually one-way: a sender normally doesn’t expect to receive a reply to its messages. It
is possible for a process to send a response, but this would usually be done on a sepa‐
rate channel. This communication pattern is asynchronous: the sender doesn’t wait
for the message to be delivered, but simply sends it and then forgets about it.

Message brokers
In the past, the landscape of message brokers was dominated by commercial enter‐
prise software from companies such as TIBCO, IBM WebSphere, and webMethods.
More recently, open source implementations such as RabbitMQ, ActiveMQ, Hor‐
netQ, NATS, and Apache Kafka have become popular. We will compare them in
more detail in Chapter 11.

The detailed delivery semantics vary by implementation and configuration, but in
general, message brokers are used as follows: one process sends a message to a named
queue or topic, and the broker ensures that the message is delivered to one or more
consumers of or subscribers to that queue or topic. There can be many producers and
many consumers on the same topic.

Modes of Dataflow | 137

onlyice
异步消息传递系统的特点。

onlyice

onlyice

onlyice
在异步消息系统中，发送者上会收到回夊，发送完就结束了。

onlyice
消息队列系统一般会有多个 topic，每个 topic 可以看作一个消息队列，可以有多个 producer 和 consumer。

消息队列一般上限制消息的编码格式，只把它当作字节序列。

A topic provides only one-way dataflow. However, a consumer may itself publish
messages to another topic (so you can chain them together, as we shall see in Chap‐
ter 11), or to a reply queue that is consumed by the sender of the original message
(allowing a request/response dataflow, similar to RPC).

Message brokers typically don’t enforce any particular data model—a message is just
a sequence of bytes with some metadata, so you can use any encoding format. If the
encoding is backward and forward compatible, you have the greatest flexibility to
change publishers and consumers independently and deploy them in any order.

If a consumer republishes messages to another topic, you may need to be careful to
preserve unknown fields, to prevent the issue described previously in the context of
databases (Figure 4-7).

Distributed actor frameworks
The actor model is a programming model for concurrency in a single process. Rather
than dealing directly with threads (and the associated problems of race conditions,
locking, and deadlock), logic is encapsulated in actors. Each actor typically represents
one client or entity, it may have some local state (which is not shared with any other
actor), and it communicates with other actors by sending and receiving asynchro‐
nous messages. Message delivery is not guaranteed: in certain error scenarios, mes‐
sages will be lost. Since each actor processes only one message at a time, it doesn’t
need to worry about threads, and each actor can be scheduled independently by the
framework.

In distributed actor frameworks, this programming model is used to scale an applica‐
tion across multiple nodes. The same message-passing mechanism is used, no matter
whether the sender and recipient are on the same node or different nodes. If they are
on different nodes, the message is transparently encoded into a byte sequence, sent
over the network, and decoded on the other side.

Location transparency works better in the actor model than in RPC, because the actor
model already assumes that messages may be lost, even within a single process.
Although latency over the network is likely higher than within the same process,
there is less of a fundamental mismatch between local and remote communication
when using the actor model.

A distributed actor framework essentially integrates a message broker and the actor
programming model into a single framework. However, if you want to perform roll‐
ing upgrades of your actor-based application, you still have to worry about forward
and backward compatibility, as messages may be sent from a node running the new
version to a node running the old version, and vice versa.

Three popular distributed actor frameworks handle message encoding as follows:

138 | Chapter 4: Encoding and Evolution

onlyice
分布式 actor 框架的模型：

- Actor 封装了业务逻辑，有单独的状态
- Actor 间的执行互上干涉，避免了多线程的问题
- Actor 的执行被框架统一调度

上同 actor 可以在同个机器，也可以在上同机器。在上同机器时，消息通过网络传递。

（这块的内容未有深入研究，本书后面的章节有再谈及，到时候再同时研究一个流行的框架。）

• Akka uses Java’s built-in serialization by default, which does not provide forward
or backward compatibility. However, you can replace it with something like Pro‐
tocol Buffers, and thus gain the ability to do rolling upgrades [50].

• Orleans by default uses a custom data encoding format that does not support
rolling upgrade deployments; to deploy a new version of your application, you
need to set up a new cluster, move traffic from the old cluster to the new one, and
shut down the old one [51, 52]. Like with Akka, custom serialization plug-ins can
be used.

• In Erlang OTP it is surprisingly hard to make changes to record schemas (despite
the system having many features designed for high availability); rolling upgrades
are possible but need to be planned carefully [53]. An experimental new maps
datatype (a JSON-like structure, introduced in Erlang R17 in 2014) may make
this easier in the future [54].

Summary
In this chapter we looked at several ways of turning data structures into bytes on the
network or bytes on disk. We saw how the details of these encodings affect not only
their efficiency, but more importantly also the architecture of applications and your
options for deploying them.

In particular, many services need to support rolling upgrades, where a new version of
a service is gradually deployed to a few nodes at a time, rather than deploying to all
nodes simultaneously. Rolling upgrades allow new versions of a service to be released
without downtime (thus encouraging frequent small releases over rare big releases)
and make deployments less risky (allowing faulty releases to be detected and rolled
back before they affect a large number of users). These properties are hugely benefi‐
cial for evolvability, the ease of making changes to an application.

During rolling upgrades, or for various other reasons, we must assume that different
nodes are running the different versions of our application’s code. Thus, it is impor‐
tant that all data flowing around the system is encoded in a way that provides back‐
ward compatibility (new code can read old data) and forward compatibility (old code
can read new data).

We discussed several data encoding formats and their compatibility properties:

• Programming language–specific encodings are restricted to a single program‐
ming language and often fail to provide forward and backward compatibility.

• Textual formats like JSON, XML, and CSV are widespread, and their compatibil‐
ity depends on how you use them. They have optional schema languages, which
are sometimes helpful and sometimes a hindrance. These formats are somewhat

Summary | 139

vague about datatypes, so you have to be careful with things like numbers and
binary strings.

• Binary schema–driven formats like Thrift, Protocol Buffers, and Avro allow
compact, efficient encoding with clearly defined forward and backward compati‐
bility semantics. The schemas can be useful for documentation and code genera‐
tion in statically typed languages. However, they have the downside that data
needs to be decoded before it is human-readable.

We also discussed several modes of dataflow, illustrating different scenarios in which
data encodings are important:

• Databases, where the process writing to the database encodes the data and the
process reading from the database decodes it

• RPC and REST APIs, where the client encodes a request, the server decodes the
request and encodes a response, and the client finally decodes the response

• Asynchronous message passing (using message brokers or actors), where nodes
communicate by sending each other messages that are encoded by the sender
and decoded by the recipient

We can conclude that with a bit of care, backward/forward compatibility and rolling
upgrades are quite achievable. May your application’s evolution be rapid and your
deployments be frequent.

References
[1] “Java Object Serialization Specification,” docs.oracle.com, 2010.

[2] “Ruby 2.2.0 API Documentation,” ruby-doc.org, Dec 2014.

[3] “The Python 3.4.3 Standard Library Reference Manual,” docs.python.org, Febru‐
ary 2015.

[4] “EsotericSoftware/kryo,” github.com, October 2014.

[5] “CWE-502: Deserialization of Untrusted Data,” Common Weakness Enumera‐
tion, cwe.mitre.org, July 30, 2014.

[6] Steve Breen: “What Do WebLogic, WebSphere, JBoss, Jenkins, OpenNMS, and
Your Application Have in Common? This Vulnerability,” foxglovesecurity.com,
November 6, 2015.

[7] Patrick McKenzie: “What the Rails Security Issue Means for Your Startup,” kalzu‐
meus.com, January 31, 2013.

[8] Eishay Smith: “jvm-serializers wiki,” github.com, November 2014.

140 | Chapter 4: Encoding and Evolution

http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
http://ruby-doc.org/core-2.2.0/
https://docs.python.org/3/library/pickle.html
https://github.com/EsotericSoftware/kryo
http://cwe.mitre.org/data/definitions/502.html
http://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability/
http://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability/
http://www.kalzumeus.com/2013/01/31/what-the-rails-security-issue-means-for-your-startup/
https://github.com/eishay/jvm-serializers/wiki

[9] “XML Is a Poor Copy of S-Expressions,” c2.com wiki.

[10] Matt Harris: “Snowflake: An Update and Some Very Important Information,”
email to Twitter Development Talk mailing list, October 19, 2010.

[11] Shudi (Sandy) Gao, C. M. Sperberg-McQueen, and Henry S. Thompson: “XML
Schema 1.1,” W3C Recommendation, May 2001.

[12] Francis Galiegue, Kris Zyp, and Gary Court: “JSON Schema,” IETF Internet-
Draft, February 2013.

[13] Yakov Shafranovich: “RFC 4180: Common Format and MIME Type for
Comma-Separated Values (CSV) Files,” October 2005.

[14] “MessagePack Specification,” msgpack.org.

[15] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski: “Thrift: Scalable Cross-
Language Services Implementation,” Facebook technical report, April 2007.

[16] “Protocol Buffers Developer Guide,” Google, Inc., developers.google.com.

[17] Igor Anishchenko: “Thrift vs Protocol Buffers vs Avro - Biased Comparison,”
slideshare.net, September 17, 2012.

[18] “A Matrix of the Features Each Individual Language Library Supports,”
wiki.apache.org.

[19] Martin Kleppmann: “Schema Evolution in Avro, Protocol Buffers and Thrift,”
martin.kleppmann.com, December 5, 2012.

[20] “Apache Avro 1.7.7 Documentation,” avro.apache.org, July 2014.

[21] Doug Cutting, Chad Walters, Jim Kellerman, et al.: “[PROPOSAL] New Subpro‐
ject: Avro,” email thread on hadoop-general mailing list, mail-archives.apache.org,
April 2009.

[22] Tony Hoare: “Null References: The Billion Dollar Mistake,” at QCon London,
March 2009.

[23] Aditya Auradkar and Tom Quiggle: “Introducing Espresso—LinkedIn’s Hot
New Distributed Document Store,” engineering.linkedin.com, January 21, 2015.

[24] Jay Kreps: “Putting Apache Kafka to Use: A Practical Guide to Building a Stream
Data Platform (Part 2),” blog.confluent.io, February 25, 2015.

[25] Gwen Shapira: “The Problem of Managing Schemas,” radar.oreilly.com, Novem‐
ber 4, 2014.

[26] “Apache Pig 0.14.0 Documentation,” pig.apache.org, November 2014.

[27] John Larmouth: ASN.1 Complete. Morgan Kaufmann, 1999. ISBN:
978-0-122-33435-1

Summary | 141

http://c2.com/cgi/wiki?XmlIsaPoorCopyOfEssExpressions
https://groups.google.com/forum/#!topic/twitter-development-talk/ahbvo3VTIYI
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://json-schema.org/
https://tools.ietf.org/html/rfc4180
https://tools.ietf.org/html/rfc4180
http://msgpack.org/
http://thrift.apache.org/static/files/thrift-20070401.pdf
http://thrift.apache.org/static/files/thrift-20070401.pdf
https://developers.google.com/protocol-buffers/docs/overview
http://www.slideshare.net/IgorAnishchenko/pb-vs-thrift-vs-avro
http://wiki.apache.org/thrift/LibraryFeatures
http://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
http://avro.apache.org/docs/1.7.7/
http://mail-archives.apache.org/mod_mbox/hadoop-general/200904.mbox/%3C49D53694.1050906@apache.org%3E
http://mail-archives.apache.org/mod_mbox/hadoop-general/200904.mbox/%3C49D53694.1050906@apache.org%3E
http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://engineering.linkedin.com/espresso/introducing-espresso-linkedins-hot-new-distributed-document-store
https://engineering.linkedin.com/espresso/introducing-espresso-linkedins-hot-new-distributed-document-store
http://blog.confluent.io/2015/02/25/stream-data-platform-2/
http://blog.confluent.io/2015/02/25/stream-data-platform-2/
http://radar.oreilly.com/2014/11/the-problem-of-managing-schemas.html
http://pig.apache.org/docs/r0.14.0/
http://www.oss.com/asn1/resources/books-whitepapers-pubs/larmouth-asn1-book.pdf

[28] Russell Housley, Warwick Ford, Tim Polk, and David Solo: “RFC 2459: Internet
X.509 Public Key Infrastructure: Certificate and CRL Profile,” IETF Network Work‐
ing Group, Standards Track, January 1999.

[29] Lev Walkin: “Question: Extensibility and Dropping Fields,” lionet.info, Septem‐
ber 21, 2010.

[30] Jesse James Garrett: “Ajax: A New Approach to Web Applications,” adaptive‐
path.com, February 18, 2005.

[31] Sam Newman: Building Microservices. O’Reilly Media, 2015. ISBN:
978-1-491-95035-7

[32] Chris Richardson: “Microservices: Decomposing Applications for Deployability
and Scalability,” infoq.com, May 25, 2014.

[33] Pat Helland: “Data on the Outside Versus Data on the Inside,” at 2nd Biennial
Conference on Innovative Data Systems Research (CIDR), January 2005.

[34] Roy Thomas Fielding: “Architectural Styles and the Design of Network-Based
Software Architectures,” PhD Thesis, University of California, Irvine, 2000.

[35] Roy Thomas Fielding: “REST APIs Must Be Hypertext-Driven,” roy.gbiv.com,
October 20 2008.

[36] “REST in Peace, SOAP,” royal.pingdom.com, October 15, 2010.

[37] “Web Services Standards as of Q1 2007,” innoq.com, February 2007.

[38] Pete Lacey: “The S Stands for Simple,” harmful.cat-v.org, November 15, 2006.

[39] Stefan Tilkov: “Interview: Pete Lacey Criticizes Web Services,” infoq.com,
December 12, 2006.

[40] “OpenAPI Specification (fka Swagger RESTful API Documentation Specifica‐
tion) Version 2.0,” swagger.io, September 8, 2014.

[41] Michi Henning: “The Rise and Fall of CORBA,” ACM Queue, volume 4, number
5, pages 28–34, June 2006. doi:10.1145/1142031.1142044

[42] Andrew D. Birrell and Bruce Jay Nelson: “Implementing Remote Procedure
Calls,” ACM Transactions on Computer Systems (TOCS), volume 2, number 1, pages
39–59, February 1984. doi:10.1145/2080.357392

[43] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall: “A Note on Dis‐
tributed Computing,” Sun Microsystems Laboratories, Inc., Technical Report
TR-94-29, November 1994.

[44] Steve Vinoski: “Convenience over Correctness,” IEEE Internet Computing, vol‐
ume 12, number 4, pages 89–92, July 2008. doi:10.1109/MIC.2008.75

142 | Chapter 4: Encoding and Evolution

https://www.ietf.org/rfc/rfc2459.txt
https://www.ietf.org/rfc/rfc2459.txt
http://lionet.info/asn1c/blog/2010/09/21/question-extensibility-removing-fields/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
http://www.infoq.com/articles/microservices-intro
http://www.infoq.com/articles/microservices-intro
http://cidrdb.org/cidr2005/papers/P12.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://royal.pingdom.com/2010/10/15/rest-in-peace-soap/
https://www.innoq.com/resources/ws-standards-poster/
http://harmful.cat-v.org/software/xml/soap/simple
http://www.infoq.com/articles/pete-lacey-ws-criticism
http://swagger.io/specification/
http://swagger.io/specification/
http://queue.acm.org/detail.cfm?id=1142044
http://dx.doi.org/10.1145/1142031.1142044
http://www.cs.princeton.edu/courses/archive/fall03/cs518/papers/rpc.pdf
http://www.cs.princeton.edu/courses/archive/fall03/cs518/papers/rpc.pdf
http://dx.doi.org/10.1145/2080.357392
http://m.mirror.facebook.net/kde/devel/smli_tr-94-29.pdf
http://m.mirror.facebook.net/kde/devel/smli_tr-94-29.pdf
http://steve.vinoski.net/pdf/IEEE-Convenience_Over_Correctness.pdf
http://dx.doi.org/10.1109/MIC.2008.75

[45] Marius Eriksen: “Your Server as a Function,” at 7th Workshop on Programming
Languages and Operating Systems (PLOS), November 2013. doi:
10.1145/2525528.2525538

[46] “grpc-common Documentation,” Google, Inc., github.com, February 2015.

[47] Aditya Narayan and Irina Singh: “Designing and Versioning Compatible Web
Services,” ibm.com, March 28, 2007.

[48] Troy Hunt: “Your API Versioning Is Wrong, Which Is Why I Decided to Do It 3
Different Wrong Ways,” troyhunt.com, February 10, 2014.

[49] “API Upgrades,” Stripe, Inc., April 2015.

[50] Jonas Bonér: “Upgrade in an Akka Cluster,” email to akka-user mailing list, grok‐
base.com, August 28, 2013.

[51] Philip A. Bernstein, Sergey Bykov, Alan Geller, et al.: “Orleans: Distributed Vir‐
tual Actors for Programmability and Scalability,” Microsoft Research Technical
Report MSR-TR-2014-41, March 2014.

[52] “Microsoft Project Orleans Documentation,” Microsoft Research, dotnet.git‐
hub.io, 2015.

[53] David Mercer, Sean Hinde, Yinso Chen, and Richard A O’Keefe: “beginner:
Updating Data Structures,” email thread on erlang-questions mailing list, erlang.com,
October 29, 2007.

[54] Fred Hebert: “Postscript: Maps,” learnyousomeerlang.com, April 9, 2014.

Summary | 143

http://monkey.org/~marius/funsrv.pdf
http://dx.doi.org/10.1145/2525528.2525538
http://dx.doi.org/10.1145/2525528.2525538
https://github.com/grpc/grpc-common
http://www.ibm.com/developerworks/websphere/library/techarticles/0705_narayan/0705_narayan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0705_narayan/0705_narayan.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
https://stripe.com/docs/upgrades
http://grokbase.com/t/gg/akka-user/138wd8j9e3/upgrade-in-an-akka-cluster
http://research.microsoft.com/pubs/210931/Orleans-MSR-TR-2014-41.pdf
http://research.microsoft.com/pubs/210931/Orleans-MSR-TR-2014-41.pdf
http://dotnet.github.io/orleans/
http://erlang.org/pipermail/erlang-questions/2007-October/030318.html
http://erlang.org/pipermail/erlang-questions/2007-October/030318.html
http://learnyousomeerlang.com/maps

	Part I. Foundations of Data Systems
	Chapter 4. Encoding and Evolution
	Formats for Encoding Data
	Language-Specific Formats
	JSON, XML, and Binary Variants
	Thrift and Protocol Buffers
	Avro
	The Merits of Schemas

	Modes of Dataflow
	Dataflow Through Databases
	Dataflow Through Services: REST and RPC
	Message-Passing Dataflow

	Summary

