PART Il
Distributed Data

For a successful technology, reality must take precedence over public relations, for nature
cannot be fooled.

—Richard Feynman, Rogers Commission Report (1986)

In Part I of this book, we discussed aspects of data systems that apply when data is
stored on a single machine. Now, in Part II, we move up a level and ask: what hap-
pens if multiple machines are involved in storage and retrieval of data?

There are various reasons why you might want to| distribute a database across multi-
ple machines:

Scalability
If your data volume, read load, or write load grows bigger than a single machine
can handle, you can potentially spread the load across multiple machines.

Fault tolerance/high availability
If your application needs to continue working even if one machine (or several
machines, or the network, or an entire datacenter) goes down, you can use multi-
ple machines to give you redundancy. When one fails, another one can take over.

Latency
If you have users around the world, you might want to have servers at various
locations worldwide so that each user can be served from a datacenter that is geo-
graphically close to them. That avoids the users having to wait for network pack-
ets to travel halfway around the world.

onlyice
把数据分布到多机的原因：

- 可扩展性（Scalability）：单机无法承载日益增长的数据量、读写请求量
- 容错 / 高可用（Fault tolerance / high availability）：一些机器挂掉时（硬件故障、网络问题等等），多台机器增加的冗余可以保证朊务上中断
- 延时（Latency）：假如你的用户遍布全球，那么在全球各地数据中心部署你的程序，会使用用户访问时的延时降低

Scaling to Higher Load

If all you need is to scale to higher load, the simplest approach is to buy a more pow-
erful machine (sometimes called vertical scaling or scaling up). Many CPUs, many
RAM chips, and many disks can be joined together under one operating system, and
a fast interconnect allows any CPU to access any part of the memory or disk. In this
kind of shared-memory architecture, all the components can be treated as a single
machine [1].!

The problem with a shared-memory approach is that the cost grows faster than line-
arly: a machine with twice as many CPUs, twice as much RAM, and twice as much
disk capacity as another typically costs significantly more than twice as much. And
due to bottlenecks, a machine twice the size cannot necessarily handle twice the load.

A shared-memory architecture may offer limited fault tolerance—high-end machines
have hot-swappable components (you can replace disks, memory modules, and even
CPUs without shutting down the machines)—but it is definitely limited to a single
geographic location.

Another approach is the shared-disk architecture, which uses several machines with
independent CPUs and RAM, but stores data on an array of disks that is shared
between the machines, which are connected via a fast network.! This architecture is
used for some data warehousing workloads, but contention and the overhead of lock-
ing limit the scalability of the shared-disk approach [2].

Shared-Nothing Architectures

By contrast, shared-nothing architectures [3] (sometimes called horizontal scaling or
scaling out) have gained a lot of popularity. In this approach, each machine or virtual
machine running the database software is called a node. Each node uses its CPUs,
RAM, and disks independently. Any coordination between nodes is done at the soft-
ware level, using a conventional network.

No special hardware is required by a shared-nothing system, so you can use whatever
machines have the best price/performance ratio. You can potentially distribute data
across multiple geographic regions, and thus reduce latency for users and potentially
be able to survive the loss of an entire datacenter. With cloud deployments of virtual

i. Inalarge machine, although any CPU can access any part of memory, some banks of memory are closer to
one CPU than to others (this is called nonuniform memory access, or NUMA [1]). To make efficient use of
this architecture, the processing needs to be broken down so that each CPU mostly accesses memory that is
nearby—which means that partitioning is still required, even when ostensibly running on one machine.

ii. Network Attached Storage (NAS) or Storage Area Network (SAN).

onlyice
为了满足更高负载，如何做扩展？几种方案：

垂直扩展（vertical scaling / scaling up）

向一台机器加入更多的 CPU、内存和磁盘。

有两种形式：
- Shared-memory architecture：所有的组件都被组装进同个机器中，包括 CPU、内存、硬盘。缺点是这些硬件需要物理上在一台机器中。
- Shared-disk architecture：CPU、内存仍在一起，硬盘可以上在同个机器中，通过快速的内网共享数据（比如 NAS、SAN）。缺点是多台机器对磁盘使用的竞争和加锁影响性能。

好处：
- 模型简化，一个操作系统下管理所有资源（业界实践中也有把机器再切割成很多虚拟机的）

缺点：
- 成本增加较快。给机器增加多一倊资源，花的钱往往会超过一倊
- 费用相较水平扩展更贵

onlyice
水平扩展（horizontal scaling / scaling out）

水平扩展也称 shared-nothing architectures。这种架构中每台机器是独立的，上共享硬件资源。它们的协作通过网络进行。

水平扩展是目前最流行的，也是适合绝大多数场景的架构。好处有：

- 性价比高：可以选择最有性价比的机器来组建集群
- 容灾能力强：可以把数据分布在多个地域中。这样即使整个数据中心挂掉，数据仍然是存在的
- 实施门槛低：云朊务的存在使得任何中小公司都可以使用这种架构

machines, you don’t need to be operating at Google scale: even for small companies,
a multi-region distributed architecture is now feasible.

In this part of the book, we focus on shared-nothing architectures—not because they
are necessarily the best choice for every use case, but rather because they require the
most caution from you, the application developer. If your data is distributed across
multiple nodes, you need to be aware of the constraints and trade-offs that occur in
such a distributed system—the database cannot magically hide these from you.

While a distributed shared-nothing architecture has many advantages, it usually also
incurs additional complexity for applications and sometimes limits the expressive-
ness of the data models you can use. In some cases, a simple single-threaded program
can perform significantly better than a cluster with over 100 CPU cores [4]. On the
other hand, shared-nothing systems can be very powerful. The next few chapters go
into details on the issues that arise when data is distributed.

Replication Versus Partitioning

There are two common ways data is distributed across multiple nodes:

Replication
Keeping a copy of the same data on several different nodes, potentially in differ-
ent locations. Replication provides redundancy: if some nodes are unavailable,
the data can still be served from the remaining nodes. Replication can also help
improve performance. We discuss replication in Chapter 5.

Partitioning
Splitting a big database into smaller subsets called partitions so that different par-
titions can be assigned to different nodes (also known as sharding). We discuss
partitioning in Chapter 6.

These are separate mechanisms, but they often go hand in hand, as illustrated in
Figure II-1.

onlyice
夊制和分区。

夊制（replication）表示数据夊制一份存放到别的结点。

分区（partitioning）表示把数据分成几小部分放在别的结点。

它们往往是配合使用的。

Partition 1, Replica 1 Partition 2, Replica 1
136 — 211 — 377 > 629 — 696 — 858 —
Four score Johannes Whereas Die Wiirde Whereas We hold
and seven Dei gracia recognition des Men- the Lords these truths
years ago Rex Anglie, of the schen ist Spiritual to be self-
our fathers Dominus inherent unantastbar and Tempo- evident
X x
1 copy of 1 copy of
! the same ! the same
Partition 1, Replica 2 y data Partition 2, Replica 2 i data
136 — 211 — 377 — 629 — 696 — 858 —
Four score Johannes Whereas Die Wiirde Whereas We hold
and seven Dei gracia recognition des Men- the Lords these truths
years ago Rex Anglie, of the schen ist Spiritual to be self-
our fathers Dominus inherent unantastbar and Tempo- evident

Figure II-1. A database split into two partitions, with two replicas per partition.

With an understanding of those concepts, we can discuss the difficult trade-offs that
you need to make in a distributed system. We'll discuss transactions in Chapter 7, as
that will help you understand all the many things that can go wrong in a data system,
and what you can do about them. We'll conclude this part of the book by discussing
the fundamental limitations of distributed systems in Chapters 8 and 9.

Later, in Part IIT of this book, we will discuss how you can take several (potentially
distributed) datastores and integrate them into a larger system, satisfying the needs of
a complex application. But first, let’s talk about distributed data.

References

[1] Ulrich Drepper: “What Every Programmer Should Know About Memory,” akka-
dia.org, November 21, 2007.

[2] Ben Stopford: “Shared Nothing vs. Shared Disk Architectures: An Independent
View,” benstopford.com, November 24, 2009.

[3] Michael Stonebraker: “The Case for Shared Nothing,” IEEE Database Engineering
Bulletin, volume 9, number 1, pages 4-9, March 1986.

[4] Frank McSherry, Michael Isard, and Derek G. Murray: “Scalability! But at What
COST?,” at 15th USENIX Workshop on Hot Topics in Operating Systems (HotOS),
May 2015.

http://www.akkadia.org/drepper/cpumemory.pdf
http://www.benstopford.com/2009/11/24/understanding-the-shared-nothing-architecture/
http://www.benstopford.com/2009/11/24/understanding-the-shared-nothing-architecture/
http://db.cs.berkeley.edu/papers/hpts85-nothing.pdf
http://www.frankmcsherry.org/assets/COST.pdf
http://www.frankmcsherry.org/assets/COST.pdf

	Part II. Distributed Data

