
T H R E A D S : I N T R O D U C T I O N

In this and the next few chapters, we describe POSIX threads, often known as
Pthreads. We won’t attempt to cover the entire Pthreads API, since it is rather large.
Various sources of further information about threads are listed at the end of this
chapter.

These chapters mainly describe the standard behavior specified for the
Pthreads API. In Section 33.5, we discuss those points where the two main Linux
threading implementations—LinuxThreads and Native POSIX Threads Library
(NPTL)—deviate from the standard.

In this chapter, we provide an overview of the operation of threads, and then
look at how threads are created and how they terminate. We conclude with a dis-
cussion of some factors that may influence the choice of a multithreaded approach
versus a multiprocess approach when designing an application.

29.1 Overview

Like processes, threads are a mechanism that permits an application to perform
multiple tasks concurrently. A single process can contain multiple threads, as illus-
trated in Figure 29-1. All of these threads are independently executing the same
program, and they all share the same global memory, including the initialized data,
uninitialized data, and heap segments. (A traditional UNIX process is simply a special
case of a multithreaded processes; it is a process that contains just one thread.)

onlyice
高亮
POSIX 标准定义了一套线程机制和 API 标准，称为 pthread。

Linux 实现了 pthread 标准，该实现被称为 NPTL（Native POSIX Threads Library）。旧的 Linux 版本的实现为 LinuxThreads，目前已不主流。

onlyice
Text

618 Chapter 29

We have simplified things somewhat in Figure 29-1. In particular, the location
of the per-thread stacks may be intermingled with shared libraries and shared
memory regions, depending on the order in which threads are created, shared
libraries loaded, and shared memory regions attached. Furthermore, the loca-
tion of the per-thread stacks can vary depending on the Linux distribution.

The threads in a process can execute concurrently. On a multiprocessor system,
multiple threads can execute parallel. If one thread is blocked on I/O, other
threads are still eligible to execute. (Although it sometimes useful to create a sepa-
rate thread purely for the purpose of performing I/O, it is often preferable to
employ one of the alternative I/O models that we describe in Chapter 63.)

Figure 29-1: Four threads executing in a process (Linux/x86-32)

Threads offer advantages over processes in certain applications. Consider the tradi-
tional UNIX approach to achieving concurrency by creating multiple processes. An
example of this is a network server design in which a parent process accepts incom-
ing connections from clients, and then uses fork() to create a separate child process
to handle communication with each client (refer to Section 60.3). Such a design

Virtual memory address
(hexadecimal)

argv, environ

Uninitialized data (bss)

Initialized data

Text (program code)

0xC0000000

Stack for main thread

Heap

0x08048000

0x40000000
TASK_UNMAPPED_BASE

0x00000000

Stack for thread 1

Stack for thread 2

Stack for thread 3

Shared libraries,
shared memory

main thread executing here

thread 1 executing here

thread 3 executing here

thread 2 executing here

in
cr

ea
si

ng
 v

ir
tu

al
 a

dd
es

se
s

onlyice
高亮
多线程程序的内存布局。

Threads: In t roduct ion 619

makes it possible to serve multiple clients simultaneously. While this approach
works well for many scenarios, it does have the following limitations in some
applications:

It is difficult to share information between processes. Since the parent and
child don’t share memory (other than the read-only text segment), we must use
some form of interprocess communication in order to exchange information
between processes.

Process creation with fork() is relatively expensive. Even with the copy-on-write
technique described in Section 24.2.2, the need to duplicate various process
attributes such as page tables and file descriptor tables means that a fork() call is
still time-consuming.

Threads address both of these problems:

Sharing information between threads is easy and fast. It is just a matter of copying
data into shared (global or heap) variables. However, in order to avoid the
problems that can occur when multiple threads try to update the same infor-
mation, we must employ the synchronization techniques described in Chapter 30.

Thread creation is faster than process creation—typically, ten times faster or
better. (On Linux, threads are implemented using the clone() system call, and
Table 28-3, on page 610, shows the differences in speed between fork() and clone().)
Thread creation is faster because many of the attributes that must be dupli-
cated in a child created by fork() are instead shared between threads. In particular,
copy-on-write duplication of pages of memory is not required, nor is duplica-
tion of page tables.

Besides global memory, threads also share a number of other attributes (i.e., these
attributes are global to a process, rather than specific to a thread). These attributes
include the following:

process ID and parent process ID;

process group ID and session ID;

controlling terminal;

process credentials (user and group IDs);

open file descriptors;

record locks created using fcntl();

signal dispositions;

file system–related information: umask, current working directory, and root
directory;

interval timers (setitimer()) and POSIX timers (timer_create());

System V semaphore undo (semadj) values (Section 47.8);

resource limits;

CPU time consumed (as returned by times());

resources consumed (as returned by getrusage()); and

nice value (set by setpriority() and nice()).

onlyice
高亮
多进程对比多线程的劣势：# 进程内共享信息困难，需要通过 IPC 手段# 创建进程的成本比较高

onlyice
高亮
多线程对比多进程：

共享信息容易；但需要使用同步机制来避免同时修改同块数据
创建线程的速度比进程快数十倍

onlyice
高亮

620 Chapter 29

Among the attributes that are distinct for each thread are the following:

thread ID (Section 29.5);

signal mask;

thread-specific data (Section 31.3);

alternate signal stack (sigaltstack());

the errno variable;

floating-point environment (see fenv(3));

realtime scheduling policy and priority (Sections 35.2 and 35.3);

CPU affinity (Linux-specific, described in Section 35.4);

capabilities (Linux-specific, described in Chapter 39); and

stack (local variables and function call linkage information).

As can be seen from Figure 29-1, all of the per-thread stacks reside within the
same virtual address space. This means that, given a suitable pointer, it is possible
for threads to share data on each other’s stacks. This is occasionally useful, but
it requires careful programming to handle the dependency that results from
the fact that a local variable remains valid only for the lifetime of the stack
frame in which it resides. (If a function returns, the memory region used by its
stack frame may be reused by a later function call. If the thread terminates, a
new thread may reuse the memory region used for the terminated thread’s
stack.) Failing to correctly handle this dependency can create bugs that are
hard to track down.

29.2 Background Details of the Pthreads API

In the late 1980s and early 1990s, several different threading APIs existed. In 1995,
POSIX.1c standardized the POSIX threads API, and this standard was later incor-
porated into SUSv3.

Several concepts apply to the Pthreads API as a whole, and we briefly introduce
these before looking in detail at the API.

Pthreads data types

The Pthreads API defines a number of data types, some of which are listed in
Table 29-1. We describe most of these data types in the following pages.

Table 29-1: Pthreads data types

Data type Description

pthread_t Thread identifier
pthread_mutex_t Mutex
pthread_mutexattr_t Mutex attributes object
pthread_cond_t Condition variable
pthread_condattr_t Condition variable attributes object
pthread_key_t Key for thread-specific data
pthread_once_t One-time initialization control context
pthread_attr_t Thread attributes object

onlyice
高亮

Threads: In t roduct ion 621

SUSv3 doesn’t specify how these data types should be represented, and portable
programs should treat them as opaque data. By this, we mean that a program
should avoid any reliance on knowledge of the structure or contents of a variable of
one of these types. In particular, we can’t compare variables of these types using
the C == operator.

Threads and errno

In the traditional UNIX API, errno is a global integer variable. However, this
doesn’t suffice for threaded programs. If a thread made a function call that
returned an error in a global errno variable, then this would confuse other threads
that might also be making function calls and checking errno. In other words, race
conditions would result. Therefore, in threaded programs, each thread has its own
errno value. On Linux, a thread-specific errno is achieved in a similar manner to
most other UNIX implementations: errno is defined as a macro that expands into a
function call returning a modifiable lvalue that is distinct for each thread. (Since
the lvalue is modifiable, it is still possible to write assignment statements of the
form errno = value in threaded programs.)

To summarize, the errno mechanism has been adapted for threads in a manner
that leaves error reporting unchanged from the traditional UNIX API.

The original POSIX.1 standard followed K&R C usage in allowing a program
to declare errno as extern int errno. SUSv3 doesn’t permit this usage (the change
actually occurred in 1995 in POSIX.1c). Nowadays, a program is required to
declare errno by including <errno.h>, which enables the implementation of a
per-thread errno.

Return value from Pthreads functions

The traditional method of returning status from system calls and some library func-
tions is to return 0 on success and –1 on error, with errno being set to indicate the
error. The functions in the Pthreads API do things differently. All Pthreads func-
tions return 0 on success or a positive value on failure. The failure value is one of
the same values that can be placed in errno by traditional UNIX system calls.

Because each reference to errno in a threaded program carries the overhead of
a function call, our example programs don’t directly assign the return value of a
Pthreads function to errno. Instead, we use an intermediate variable and employ
our errExitEN() diagnostic function (Section 3.5.2), like so:

pthread_t *thread;
int s;

s = pthread_create(&thread, NULL, func, &arg);
if (s != 0)
 errExitEN(s, "pthread_create");

onlyice
高亮
不同线程拥有自己的 errno。在 Linux 上，读取 errno 实际上是通过一段 macro 将其转化为一个函数调用（而不是读一个全局变量）。

onlyice
高亮
一般系统调用的 API，其返回值为 0 表示成功、-1 表示失败；具体失败原因从 errno 中取。pthread API 不同，0 表示成功，正整数表示失败，且其值同 errno 定义的一致。

622 Chapter 29

Compiling Pthreads programs

On Linux, programs that use the Pthreads API must be compiled with the cc –pthread
option. The effects of this option include the following:

The _REENTRANT preprocessor macro is defined. This causes the declarations of a
few reentrant functions to be exposed.

The program is linked with the libpthread library (the equivalent of –lpthread).

The precise options for compiling a multithreaded program vary across imple-
mentations (and compilers). Some other implementations (e.g., Tru64) also
use cc –pthread; Solaris and HP-UX use cc –mt.

29.3 Thread Creation

When a program is started, the resulting process consists of a single thread, called
the initial or main thread. In this section, we look at how to create additional
threads.

The pthread_create() function creates a new thread.

The new thread commences execution by calling the function identified by start
with the argument arg (i.e., start(arg)). The thread that calls pthread_create() continues
execution with the next statement that follows the call. (This behavior is the same as
the glibc wrapper function for the clone() system call described in Section 28.2.)

The arg argument is declared as void *, meaning that we can pass a pointer to
any type of object to the start function. Typically, arg points to a global or heap vari-
able, but it can also be specified as NULL. If we need to pass multiple arguments to
start, then arg can be specified as a pointer to a structure containing the arguments
as separate fields. With judicious casting, we can even specify arg as an int.

Strictly speaking, the C standards don’t define the results of casting int to void *
and vice versa. However, most C compilers permit these operations, and they
produce the desired result; that is, int j == (int) ((void *) j).

The return value of start is likewise of type void *, and it can be employed in the
same way as the arg argument. We’ll see how this value is used when we describe
the pthread_join() function below.

Caution is required when using a cast integer as the return value of a thread’s
start function. The reason for this is that PTHREAD_CANCELED, the value returned
when a thread is canceled (see Chapter 32), is usually some implementation-
defined integer value cast to void *. If a thread’s start function returns the
same integer value, then, to another thread that is doing a pthread_join(), it will

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
 void *(*start)(void *), void *arg);

Returns 0 on success, or a positive error number on error

Threads: In t roduct ion 623

wrongly appear that the thread was canceled. In an application that employs
thread cancellation and chooses to return cast integer values from a thread’s
start functions, we must ensure that a normally terminating thread does not
return an integer whose value matches PTHREAD_CANCELED on that Pthreads
implementation. A portable application would need to ensure that normally
terminating threads don’t return integer values that match PTHREAD_CANCELED on
any of the implementations on which the application is to run.

The thread argument points to a buffer of type pthread_t into which the unique
identifier for this thread is copied before pthread_create() returns. This identifier
can be used in later Pthreads calls to refer to the thread.

SUSv3 explicitly notes that the implementation need not initialize the buffer
pointed to by thread before the new thread starts executing; that is, the new thread
may start running before pthread_create() returns to its caller. If the new
thread needs to obtain its own ID, then it must do so using pthread_self()
(described in Section 29.5).

The attr argument is a pointer to a pthread_attr_t object that specifies various
attributes for the new thread. We say some more about these attributes in Section 29.8.
If attr is specified as NULL, then the thread is created with various default attributes,
and this is what we’ll do in most of the example programs in this book.

After a call to pthread_create(), a program has no guarantees about which thread
will next be scheduled to use the CPU (on a multiprocessor system, both threads
may simultaneously execute on different CPUs). Programs that implicitly rely on a
particular order of scheduling are open to the same sorts of race conditions that we
described in Section 24.4. If we need to enforce a particular order of execution, we
must use one of the synchronization techniques described in Chapter 30.

29.4 Thread Termination

The execution of a thread terminates in one of the following ways:

The thread’s start function performs a return specifying a return value for the
thread.

The thread calls pthread_exit() (described below).

The thread is canceled using pthread_cancel() (described in Section 32.1).

Any of the threads calls exit(), or the main thread performs a return (in the
main() function), which causes all threads in the process to terminate immediately.

The pthread_exit() function terminates the calling thread, and specifies a return
value that can be obtained in another thread by calling pthread_join().

include <pthread.h>

void pthread_exit(void *retval);

onlyice
高亮
调用完 pthread_create() 后，操作系统并不保证马上调度到该线程运行。

onlyice
高亮
线程结束自身运行的数种方式。

onlyice
高亮

624 Chapter 29

Calling pthread_exit() is equivalent to performing a return in the thread’s start func-
tion, with the difference that pthread_exit() can be called from any function that has
been called by the thread’s start function.

The retval argument specifies the return value for the thread. The value pointed
to by retval should not be located on the thread’s stack, since the contents of that
stack become undefined on thread termination. (For example, that region of the
process’s virtual memory might be immediately reused by the stack for a new
thread.) The same statement applies to the value given to a return statement in
the thread’s start function.

If the main thread calls pthread_exit() instead of calling exit() or performing a
return, then the other threads continue to execute.

29.5 Thread IDs

Each thread within a process is uniquely identified by a thread ID. This ID is
returned to the caller of pthread_create(), and a thread can obtain its own ID using
pthread_self().

Thread IDs are useful within applications for the following reasons:

Various Pthreads functions use thread IDs to identify the thread on which they
are to act. Examples of such functions include pthread_join(), pthread_detach(),
pthread_cancel(), and pthread_kill(), all of which we describe in this and the fol-
lowing chapters.

In some applications, it can be useful to tag dynamic data structures with the
ID of a particular thread. This can serve to identify the thread that created or
“owns” a data structure, or can be used by one thread to identify a specific
thread that should subsequently do something with that data structure.

The pthread_equal() function allows us check whether two thread IDs are the same.

For example, to check if the ID of the calling thread matches a thread ID saved in
the variable tid, we could write the following:

if (pthread_equal(tid, pthread_self())
 printf("tid matches self\n");

include <pthread.h>

pthread_t pthread_self(void);

Returns the thread ID of the calling thread

include <pthread.h>

int pthread_equal(pthread_t t1, pthread_t t2);

Returns nonzero value if t1 and t2 are equal, otherwise 0

onlyice
高亮
线程执行完后，其返回值（一般是指针）不该指向线程的栈。因为这块内存区域在线程结束后会被 OS 回收利用。

Threads: In t roduct ion 625

The pthread_equal() function is needed because the pthread_t data type must be
treated as opaque data. On Linux, pthread_t happens to be defined as an unsigned
long, but on other implementations, it could be a pointer or a structure.

In NPTL, pthread_t is actually a pointer that has been cast to unsigned long.

SUSv3 doesn’t require pthread_t to be implemented as a scalar type; it could be a struc-
ture. Therefore, we can’t portably use code such as the following to display a
thread ID (though it does work on many implementations, including Linux, and is
sometimes useful for debugging purposes):

pthread_t thr;

printf("Thread ID = %ld\n", (long) thr); /* WRONG! */

In the Linux threading implementations, thread IDs are unique across processes.
However, this is not necessarily the case on other implementations, and SUSv3
explicitly notes that an application can’t portably use a thread ID to identify a
thread in another process. SUSv3 also notes that an implementation is permitted to
reuse a thread ID after a terminated thread has been joined with pthread_join() or
after a detached thread has terminated. (We explain pthread_join() in the next sec-
tion, and detached threads in Section 29.7.)

POSIX thread IDs are not the same as the thread IDs returned by the Linux-
specific gettid() system call. POSIX thread IDs are assigned and maintained by
the threading implementation. The thread ID returned by gettid() is a number
(similar to a process ID) that is assigned by the kernel. Although each POSIX
thread has a unique kernel thread ID in the Linux NPTL threading implemen-
tation, an application generally doesn’t need to know about the kernel IDs
(and won’t be portable if it depends on knowing them).

29.6 Joining with a Terminated Thread

The pthread_join() function waits for the thread identified by thread to terminate. (If
that thread has already terminated, pthread_join() returns immediately.) This opera-
tion is termed joining.

If retval is a non-NULL pointer, then it receives a copy of the terminated thread’s
return value—that is, the value that was specified when the thread performed a
return or called pthread_exit().

Calling pthread_join() for a thread ID that has been previously joined can lead
to unpredictable behavior; for example, it might instead join with a thread created
later that happened to reuse the same thread ID.

include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

Returns 0 on success, or a positive error number on error

626 Chapter 29

If a thread is not detached (see Section 29.7), then we must join with it using
pthread_join(). If we fail to do this, then, when the thread terminates, it produces
the thread equivalent of a zombie process (Section 26.2). Aside from wasting system
resources, if enough thread zombies accumulate, we won’t be able to create addi-
tional threads.

The task that pthread_join() performs for threads is similar to that performed
by waitpid() for processes. However, there are some notable differences:

Threads are peers. Any thread in a process can use pthread_join() to join with
any other thread in the process. For example, if thread A creates thread B,
which creates thread C, then it is possible for thread A to join with thread C, or
vice versa. This differs from the hierarchical relationship between processes.
When a parent process creates a child using fork(), it is the only process that
can wait() on that child. There is no such relationship between the thread that
calls pthread_create() and the resulting new thread.

There is no way of saying “join with any thread” (for processes, we can do this
using the call waitpid(–1, &status, options)); nor is there a way to do a nonblocking
join (analogous to the waitpid() WNOHANG flag). There are ways to achieve similar
functionality using condition variables; we show an example in Section 30.2.4.

The limitation that pthread_join() can join only with a specific thread ID is
intentional. The idea is that a program should join only with the threads that it
“knows” about. The problem with a “join with any thread” operation stems from
the fact that there is no hierarchy of threads, so such an operation could indeed
join with any thread, including one that was privately created by a library function.
(The condition-variable technique that we show in Section 30.2.4 allows a
thread to join only with any other thread that it knows about.) As a conse-
quence, the library would no longer be able to join with that thread in order to
obtain its status, and it would erroneously try to join with a thread ID that had
already been joined. In other words, a “join with any thread” operation is
incompatible with modular program design.

Example program

The program in Listing 29-1 creates another thread and then joins with it.

Listing 29-1: A simple program using Pthreads

––– threads/simple_thread.c

#include <pthread.h>
#include "tlpi_hdr.h"

static void *
threadFunc(void *arg)
{
 char *s = (char *) arg;

 printf("%s", s);

 return (void *) strlen(s);
}

onlyice
高亮
线程间等待结束和回收资源 pthread_join() 与进程间 waitpid() 不同之处：# 不同线程之间是对等关系，任意线程可以调用 pthread_join() 等待其他任意进程结束；进程间则需要是父进程回收子进程# 由于线程间并没有父子关系，pthread 没有提供一个可以 join 任意线程的 API（进程则有）#* 如果可以 join 任意线程，可能会把当前进程使用的第三方库的线程也 join 了，引起混乱#* pthread 设计上希望线程只 join 自己知道（known）的其他线程#* 但是 pthread 提供了 condition variables 机制可以模拟这一效果

Threads: In t roduct ion 627

int
main(int argc, char *argv[])
{
 pthread_t t1;
 void *res;
 int s;

 s = pthread_create(&t1, NULL, threadFunc, "Hello world\n");
 if (s != 0)
 errExitEN(s, "pthread_create");

 printf("Message from main()\n");
 s = pthread_join(t1, &res);
 if (s != 0)
 errExitEN(s, "pthread_join");

 printf("Thread returned %ld\n", (long) res);

 exit(EXIT_SUCCESS);
}

––– threads/simple_thread.c

When we run the program in Listing 29-1, we see the following:

$./simple_thread
Message from main()
Hello world
Thread returned 12

Depending on how the two threads were scheduled, the order of the first two lines
of output might be reversed.

29.7 Detaching a Thread

By default, a thread is joinable, meaning that when it terminates, another thread
can obtain its return status using pthread_join(). Sometimes, we don’t care about
the thread’s return status; we simply want the system to automatically clean up and
remove the thread when it terminates. In this case, we can mark the thread as detached,
by making a call to pthread_detach() specifying the thread’s identifier in thread.

As an example of the use of pthread_detach(), a thread can detach itself using the fol-
lowing call:

pthread_detach(pthread_self());

#include <pthread.h>

int pthread_detach(pthread_t thread);

Returns 0 on success, or a positive error number on error

628 Chapter 29

Once a thread has been detached, it is no longer possible to use pthread_join() to
obtain its return status, and the thread can’t be made joinable again.

Detaching a thread doesn’t make it immune to a call to exit() in another thread
or a return in the main thread. In such an event, all threads in the process are imme-
diately terminated, regardless of whether they are joinable or detached. To put
things another way, pthread_detach() simply controls what happens after a thread
terminates, not how or when it terminates.

29.8 Thread Attributes

We mentioned earlier that the pthread_create() attr argument, whose type is
pthread_attr_t, can be used to specify the attributes used in the creation of a new
thread. We won’t go into the details of these attributes (for those details, see the
references listed at the end of this chapter) or show the prototypes of the various
Pthreads functions that can be used to manipulate a pthread_attr_t object. We’ll just
mention that these attributes include information such as the location and size of
the thread’s stack, the thread’s scheduling policy and priority (akin to the process
realtime scheduling policies and priorities described in Sections 35.2 and 35.3),
and whether the thread is joinable or detached.

As an example of the use of thread attributes, the code shown in Listing 29-2
creates a new thread that is made detached at the time of thread creation (rather
than subsequently, using pthread_detach()). This code first initializes a thread
attributes structure with default values, sets the attribute required to create a
detached thread, and then creates a new thread using the thread attributes struc-
ture. Once the thread has been created, the attributes object is no longer needed,
and so is destroyed.

Listing 29-2: Creating a thread with the detached attribute

––– from threads/detached_attrib.c
 pthread_t thr;
 pthread_attr_t attr;
 int s;

 s = pthread_attr_init(&attr); /* Assigns default values */
 if (s != 0)
 errExitEN(s, "pthread_attr_init");

 s = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 if (s != 0)
 errExitEN(s, "pthread_attr_setdetachstate");

 s = pthread_create(&thr, &attr, threadFunc, (void *) 1);
 if (s != 0)
 errExitEN(s, "pthread_create");

 s = pthread_attr_destroy(&attr); /* No longer needed */
 if (s != 0)
 errExitEN(s, "pthread_attr_destroy");

––– from threads/detached_attrib.c

onlyice
高亮
Thread attributes 的大致作用。

Threads: In t roduct ion 629

29.9 Threads Versus Processes

In this section, we briefly consider some of the factors that might influence our
choice of whether to implement an application as a group of threads or as a group
of processes. We begin by considering the advantages of a multithreaded approach:

Sharing data between threads is easy. By contrast, sharing data between processes
requires more work (e.g., creating a shared memory segment or using a pipe).

Thread creation is faster than process creation; context-switch time may be
lower for threads than for processes.

Using threads can have some disadvantages compared to using processes:

When programming with threads, we need to ensure that the functions we call
are thread-safe or are called in a thread-safe manner. (We describe the concept
of thread safety in Section 31.1.) Multiprocess applications don’t need to be
concerned with this.

A bug in one thread (e.g., modifying memory via an incorrect pointer) can dam-
age all of the threads in the process, since they share the same address space and
other attributes. By contrast, processes are more isolated from one another.

Each thread is competing for use of the finite virtual address space of the host
process. In particular, each thread’s stack and thread-specific data (or thread-
local storage) consumes a part of the process virtual address space, which is
consequently unavailable for other threads. Although the available virtual
address space is large (e.g., typically 3 GB on x86-32), this factor may be a sig-
nificant limitation for processes employing large numbers of threads or
threads that require large amounts of memory. By contrast, separate processes
can each employ the full range of available virtual memory (subject to the limi-
tations of RAM and swap space).

The following are some other points that may influence our choice of threads
versus processes:

Dealing with signals in a multithreaded application requires careful design. (As
a general principle, it is usually desirable to avoid the use of signals in multi-
threaded programs.) We say more about threads and signals in Section 33.2.

In a multithreaded application, all threads must be running the same program
(although perhaps in different functions). In a multiprocess application, differ-
ent processes can run different programs.

Aside from data, threads also share certain other information (e.g., file descrip-
tors, signal dispositions, current working directory, and user and group IDs).
This may be an advantage or a disadvantage, depending on the application.

29.10 Summary

In a multithreaded process, multiple threads are concurrently executing the same
program. All of the threads share the same global and heap variables, but each
thread has a private stack for local variables. The threads in a process also share a

onlyice
高亮
章末总结的线程与进程对比，是本章的重点。

* 共享数据：
** 线程比进程容易；进程需要额外的 IPC 代码
** 线程间读写数据，需要额外的同步机制，避免同时写同块数据
* 创建和调度成本：线程低一个数量级
* 使用第三方库的考虑：多线程时需要开发者确认使用的库是否是线程安全的；如果不是，需要以线程安全的方式调用它。多进程没有此问题
* 线程间共享虚拟内存地址带来的问题：
** 如果一个线程出现 bug，错误地修改了另外一个线程的内存，可能引起很难定位的 bug；进程无此问题
** 同一进程的多个线程，其所使用的虚拟内存总和不能超过单进程的限制（比如 x86-32 中的 3G）；而多进程时，每个进程都能使用 3G。当然在 64 位系统普遍的今天不是什么大问题
* 多线程在其他编程上的考虑点：
** 信号处理：很难正确的处理，因此多线程程序一般不配合使用信号机制
** 多线程运行的代码只能来自一个可执行程序（尽管可能是不同的函数）；多进程则可以运行不同程序
** 多线程还共享了 fd、当前工作目录、user / group ID 等；视情况可能是优点也可能是缺点

630 Chapter 29

number of other attributes, including process ID, open file descriptors, signal dis-
positions, current working directory, and resource limits.

The key difference between threads and processes is the easier sharing of
information that threads provide, and this is the main reason that some application
designs map better onto a multithread design than onto a multiprocess design.
Threads can also provide better performance for some operations (e.g., thread
creation is faster than process creation), but this factor is usually secondary in influ-
encing the choice of threads versus processes.

Threads are created using pthread_create(). Each thread can then independently
terminate using pthread_exit(). (If any thread calls exit(), then all threads immedi-
ately terminate.) Unless a thread has been marked as detached (e.g., via a call to
pthread_detach()), it must be joined by another thread using pthread_join(), which
returns the termination status of the joined thread.

Further information

[Butenhof, 1996] provides an exposition of Pthreads that is both readable and thor-
ough. [Robbins & Robbins, 2003] also provides good coverage of Pthreads. [Tanen-
baum, 2007] provides a more theoretical introduction to thread concepts, covering
topics such as mutexes, critical regions, conditional variables, and deadlock detec-
tion and avoidance. [Vahalia, 1996] provides background on the implementation of
threads.

29.11 Exercises

29-1. What possible outcomes might there be if a thread executes the following code:

pthread_join(pthread_self(), NULL);

Write a program to see what actually happens on Linux. If we have a variable, tid,
containing a thread ID, how can a thread prevent itself from making a call,
pthread_join(tid, NULL), that is equivalent to the above statement?

29-2. Aside from the absence of error checking and various variable and structure
declarations, what is the problem with the following program?

static void *
threadFunc(void *arg)
{
 struct someStruct *pbuf = (struct someStruct *) arg;

 /* Do some work with structure pointed to by 'pbuf' */
}

int
main(int argc, char *argv[])
{
 struct someStruct buf;

 pthread_create(&thr, NULL, threadFunc, (void *) &buf);
 pthread_exit(NULL);
}

	29: Threads: Introduction
	29.1 Overview
	29.2 Background Details of the Pthreads API
	29.3 Thread Creation
	29.4 Thread Termination
	29.5 Thread IDs
	29.6 Joining with a Terminated Thread
	29.7 Detaching a Thread
	29.8 Thread Attributes
	29.9 Threads Versus Processes
	29.10 Summary
	29.11 Exercises

