
T H R E A D S :  T H R E A D  
S Y N C H R O N I Z A T I O N

In this chapter, we describe two tools that threads can use to synchronize their
actions: mutexes and condition variables. Mutexes allow threads to synchronize
their use of a shared resource, so that, for example, one thread doesn’t try to access
a shared variable at the same time as another thread is modifying it. Condition vari-
ables perform a complementary task: they allow threads to inform each other that a
shared variable (or other shared resource) has changed state.

30.1 Protecting Accesses to Shared Variables: Mutexes

One of the principal advantages of threads is that they can share information via
global variables. However, this easy sharing comes at a cost: we must take care that
multiple threads do not attempt to modify the same variable at the same time, or
that one thread doesn’t try to read the value of a variable while another thread is
modifying it. The term critical section is used to refer to a section of code that
accesses a shared resource and whose execution should be atomic; that is, its execu-
tion should not be interrupted by another thread that simultaneously accesses the
same shared resource.

Listing 30-1 provides a simple example of the kind of problems that can occur
when shared resources are not accessed atomically. This program creates two
threads, each of which executes the same function. The function executes a loop that
repeatedly increments a global variable, glob, by copying glob into the local variable
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loc, incrementing loc, and copying loc back to glob. (Since loc is an automatic variable
allocated on the per-thread stack, each thread has its own copy of this variable.)
The number of iterations of the loop is determined by the command-line argument
supplied to the program, or by a default value, if no argument is supplied.

Listing 30-1: Incorrectly incrementing a global variable from two threads

––––––––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_incr.c
#include <pthread.h>
#include "tlpi_hdr.h"

static int glob = 0;

static void *                   /* Loop 'arg' times incrementing 'glob' */
threadFunc(void *arg)
{
    int loops = *((int *) arg);
    int loc, j;

    for (j = 0; j < loops; j++) {
        loc = glob;
        loc++;
        glob = loc;
    }

    return NULL;
}

int
main(int argc, char *argv[])
{
    pthread_t t1, t2;
    int loops, s;

    loops = (argc > 1) ? getInt(argv[1], GN_GT_0, "num-loops") : 10000000;

    s = pthread_create(&t1, NULL, threadFunc, &loops);
    if (s != 0)
        errExitEN(s, "pthread_create");
    s = pthread_create(&t2, NULL, threadFunc, &loops);
    if (s != 0)
        errExitEN(s, "pthread_create");

    s = pthread_join(t1, NULL);
    if (s != 0)
        errExitEN(s, "pthread_join");
    s = pthread_join(t2, NULL);
    if (s != 0)
        errExitEN(s, "pthread_join");

    printf("glob = %d\n", glob);
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_incr.c
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Figure 30-1: Two threads incrementing a global variable without synchronization

When we run the program in Listing 30-1 specifying that each thread should incre-
ment the variable 1000 times, all seems well:

$ ./thread_incr 1000
glob = 2000

However, what has probably happened here is that the first thread completed all of
its work and terminated before the second thread even started. When we ask both
threads to do a lot more work, we see a rather different result:

$ ./thread_incr 10000000
glob = 16517656

At the end of this sequence, the value of glob should have been 20 million. The
problem here results from execution sequences such as the following (see also
Figure 30-1, above):

1. Thread 1 fetches the current value of glob into its local variable loc. Let’s
assume that the current value of glob is 2000.

2. The scheduler time slice for thread 1 expires, and thread 2 commences execution.

3. Thread 2 performs multiple loops in which it fetches the current value of glob
into its local variable loc, increments loc, and assigns the result to glob. In the
first of these loops, the value fetched from glob will be 2000. Let’s suppose that by
the time the time slice for thread 2 has expired, glob has been increased to 3000.
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4. Thread 1 receives another time slice and resumes execution where it left off.
Having previously (step 1) copied the value of glob (2000) into its loc, it now
increments loc and assigns the result (2001) to glob. At this point, the effect of
the increment operations performed by thread 2 is lost.

If we run the program in Listing 30-1 multiple times with the same command-line
argument, we see that the printed value of glob fluctuates wildly:

$ ./thread_incr 10000000
glob = 10880429
$ ./thread_incr 10000000
glob = 13493953

This nondeterministic behavior is a consequence of the vagaries of the kernel’s
CPU scheduling decisions. In complex programs, this nondeterministic behavior
means that such errors may occur only rarely, be hard to reproduce, and therefore
be difficult to find.

It might seem that we could eliminate the problem by replacing the three state-
ments inside the for loop in the threadFunc() function in Listing 30-1 with a single
statement:

glob++;             /* or: ++glob; */

However, on many hardware architectures (e.g., RISC architectures), the compiler
would still need to convert this single statement into machine code whose steps are
equivalent to the three statements inside the loop in threadFunc(). In other words,
despite its simple appearance, even a C increment operator may not be atomic, and
it might demonstrate the behavior that we described above.

To avoid the problems that can occur when threads try to update a shared vari-
able, we must use a mutex (short for mutual exclusion) to ensure that only one thread
at a time can access the variable. More generally, mutexes can be used to ensure
atomic access to any shared resource, but protecting shared variables is the most
common use.

A mutex has two states: locked and unlocked. At any moment, at most one
thread may hold the lock on a mutex. Attempting to lock a mutex that is already
locked either blocks or fails with an error, depending on the method used to place
the lock.

When a thread locks a mutex, it becomes the owner of that mutex. Only the
mutex owner can unlock the mutex. This property improves the structure of code
that uses mutexes and also allows for some optimizations in the implementation of
mutexes. Because of this ownership property, the terms acquire and release are
sometimes used synonymously for lock and unlock.

In general, we employ a different mutex for each shared resource (which may
consist of multiple related variables), and each thread employs the following proto-
col for accessing a resource:

lock the mutex for the shared resource;

access the shared resource; and

unlock the mutex.
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If multiple threads try to execute this block of code (a critical section), the fact that
only one thread can hold the mutex (the others remain blocked) means that only
one thread at a time can enter the block, as illustrated in Figure 30-2.

Figure 30-2: Using a mutex to protect a critical section

Finally, note that mutex locking is advisory, rather than mandatory. By this, we
mean that a thread is free to ignore the use of a mutex and simply access the corre-
sponding shared variable(s). In order to safely handle shared variables, all threads
must cooperate in their use of a mutex, abiding by the locking rules it enforces.

30.1.1 Statically Allocated Mutexes
A mutex can either be allocated as a static variable or be created dynamically at run
time (for example, in a block of memory allocated via malloc()). Dynamic mutex cre-
ation is somewhat more complex, and we delay discussion of it until Section 30.1.5.

A mutex is a variable of the type pthread_mutex_t. Before it can be used, a
mutex must always be initialized. For a statically allocated mutex, we can do this by
assigning it the value PTHREAD_MUTEX_INITIALIZER, as in the following example:

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

According to SUSv3, applying the operations that we describe in the remain-
der of this section to a copy of a mutex yields results that are undefined. Mutex
operations should always be performed only on the original mutex that has
been statically initialized using PTHREAD_MUTEX_INITIALIZER or dynamically initial-
ized using pthread_mutex_init() (described in Section 30.1.5).

30.1.2 Locking and Unlocking a Mutex
After initialization, a mutex is unlocked. To lock and unlock a mutex, we use the
pthread_mutex_lock() and pthread_mutex_unlock() functions.

lock mutex M

access shared resource

unlock mutex M

lock mutex M

access shared resource

unlock mutex M

blocks

unblocks, lock granted

Thread A Thread B
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To lock a mutex, we specify the mutex in a call to pthread_mutex_lock(). If the mutex
is currently unlocked, this call locks the mutex and returns immediately. If the
mutex is currently locked by another thread, then pthread_mutex_lock() blocks until
the mutex is unlocked, at which point it locks the mutex and returns.

If the calling thread itself has already locked the mutex given to
pthread_mutex_lock(), then, for the default type of mutex, one of two implementation-
defined possibilities may result: the thread deadlocks, blocked trying to lock a
mutex that it already owns, or the call fails, returning the error EDEADLK. On Linux,
the thread deadlocks by default. (We describe some other possible behaviors when
we look at mutex types in Section 30.1.7.)

The pthread_mutex_unlock() function unlocks a mutex previously locked by the
calling thread. It is an error to unlock a mutex that is not currently locked, or to
unlock a mutex that is locked by another thread.

If more than one other thread is waiting to acquire the mutex unlocked by a
call to pthread_mutex_unlock(), it is indeterminate which thread will succeed in
acquiring it.

Example program

Listing 30-2 is a modified version of the program in Listing 30-1. It uses a mutex to
protect access to the global variable glob. When we run this program with a similar
command line to that used earlier, we see that glob is always reliably incremented:

$ ./thread_incr_mutex 10000000
glob = 20000000

Listing 30-2: Using a mutex to protect access to a global variable
–––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_incr_mutex.c
#include <pthread.h>
#include "tlpi_hdr.h"

static int glob = 0;
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

static void *                   /* Loop 'arg' times incrementing 'glob' */
threadFunc(void *arg)
{
    int loops = *((int *) arg);
    int loc, j, s;

    for (j = 0; j < loops; j++) {
        s = pthread_mutex_lock(&mtx);
        if (s != 0)
            errExitEN(s, "pthread_mutex_lock");

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

Both return 0 on success, or a positive error number on error
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        loc = glob;
        loc++;
        glob = loc;

        s = pthread_mutex_unlock(&mtx);
        if (s != 0)
            errExitEN(s, "pthread_mutex_unlock");
    }

    return NULL;
}

int
main(int argc, char *argv[])
{
    pthread_t t1, t2;
    int loops, s;

    loops = (argc > 1) ? getInt(argv[1], GN_GT_0, "num-loops") : 10000000;

    s = pthread_create(&t1, NULL, threadFunc, &loops);
    if (s != 0)
        errExitEN(s, "pthread_create");
    s = pthread_create(&t2, NULL, threadFunc, &loops);
    if (s != 0)
        errExitEN(s, "pthread_create");

    s = pthread_join(t1, NULL);
    if (s != 0)
        errExitEN(s, "pthread_join");
    s = pthread_join(t2, NULL);
    if (s != 0)
        errExitEN(s, "pthread_join");

    printf("glob = %d\n", glob);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_incr_mutex.c

pthread_mutex_trylock() and pthread_mutex_timedlock()

The Pthreads API provides two variants of the pthread_mutex_lock() function:
pthread_mutex_trylock() and pthread_mutex_timedlock(). (See the manual pages for
prototypes of these functions.)

The pthread_mutex_trylock() function is the same as pthread_mutex_lock(), except
that if the mutex is currently locked, pthread_mutex_trylock() fails, returning the
error EBUSY.

The pthread_mutex_timedlock() function is the same as pthread_mutex_lock(),
except that the caller can specify an additional argument, abstime, that places a limit
on the time that the thread will sleep while waiting to acquire the mutex. If the time
interval specified by its abstime argument expires without the caller becoming the
owner of the mutex, pthread_mutex_timedlock() returns the error ETIMEDOUT.
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The pthread_mutex_trylock() and pthread_mutex_timedlock() functions are much
less frequently used than pthread_mutex_lock(). In most well-designed applications, a
thread should hold a mutex for only a short time, so that other threads are not pre-
vented from executing in parallel. This guarantees that other threads that are
blocked on the mutex will soon be granted a lock on the mutex. A thread that uses
pthread_mutex_trylock() to periodically poll the mutex to see if it can be locked risks
being starved of access to the mutex while other queued threads are successively
granted access to the mutex via pthread_mutex_lock().

30.1.3 Performance of Mutexes
What is the cost of using a mutex? We have shown two different versions of a pro-
gram that increments a shared variable: one without mutexes (Listing 30-1) and
one with mutexes (Listing 30-2). When we run these two programs on an x86-32
system running Linux 2.6.31 (with NPTL), we find that the version without
mutexes requires a total of 0.35 seconds to execute 10 million loops in each thread
(and produces the wrong result), while the version with mutexes requires 3.1 seconds.

At first, this seems expensive. But, consider the main loop executed by the ver-
sion that does not employ a mutex (Listing 30-1). In that version, the threadFunc()
function executes a for loop that increments a loop control variable, compares that
variable against another variable, performs two assignments and another incre-
ment operation, and then branches back to the top of the loop. The version that
uses a mutex (Listing 30-2) performs the same steps, and locks and unlocks the
mutex each time around the loop. In other words, the cost of locking and unlocking
a mutex is somewhat less than ten times the cost of the operations that we listed for
the first program. This is relatively cheap. Furthermore, in the typical case, a thread
would spend much more time doing other work, and perform relatively fewer
mutex lock and unlock operations, so that the performance impact of using a mutex
is not significant in most applications.

To put this further in perspective, running some simple test programs on the
same system showed that 20 million loops locking and unlocking a file region using
fcntl() (Section 55.3) require 44 seconds, and 20 million loops incrementing and
decrementing a System V semaphore (Chapter 47) require 28 seconds. The problem
with file locks and semaphores is that they always require a system call for the lock
and unlock operations, and each system call has a small, but appreciable, cost (Sec-
tion 3.1). By contrast, mutexes are implemented using atomic machine-language
operations (performed on memory locations visible to all threads) and require system
calls only in case of lock contention.

On Linux, mutexes are implemented using futexes (an acronym derived from
fast user space mutexes), and lock contentions are dealt with using the futex() system
call. We don’t describe futexes in this book (they are not intended for direct
use in user-space applications), but details can be found in [Drepper, 2004 (a)],
which also describes how mutexes are implemented using futexes. [Franke et al.,
2002] is a (now outdated) paper written by the developers of futexes, which
describes the early  futex implementation and looks at the performance gains
derived from futexes.
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30.1.4 Mutex Deadlocks
Sometimes, a thread needs to simultaneously access two or more different shared
resources, each of which is governed by a separate mutex. When more than one
thread is locking the same set of mutexes, deadlock situations can arise. Figure 30-3
shows an example of a deadlock in which each thread successfully locks one mutex,
and then tries to lock the mutex that the other thread has already locked. Both
threads will remain blocked indefinitely.

Figure 30-3: A deadlock when two threads lock two mutexes

The simplest way to avoid such deadlocks is to define a mutex hierarchy. When
threads can lock the same set of mutexes, they should always lock them in the same
order. For example, in the scenario in Figure 30-3, the deadlock could be avoided if
the two threads always lock the mutexes in the order mutex1 followed by mutex2.
Sometimes, there is a logically obvious hierarchy of mutexes. However, even if
there isn’t, it may be possible to devise an arbitrary hierarchical order that all
threads should follow.

An alternative strategy that is less frequently used is “try, and then back off.” In this
strategy, a thread locks the first mutex using pthread_mutex_lock(), and then locks the
remaining mutexes using pthread_mutex_trylock(). If any of the pthread_mutex_trylock()
calls fails (with EBUSY), then the thread releases all mutexes, and then tries again,
perhaps after a delay interval. This approach is less efficient than a lock hierarchy,
since multiple iterations may be required. On the other hand, it can be more flexible,
since it doesn’t require a rigid mutex hierarchy. An example of this strategy is
shown in [Butenhof, 1996].

30.1.5 Dynamically Initializing a Mutex
The static initializer value PTHREAD_MUTEX_INITIALIZER can be used only for initializing
a statically allocated mutex with default attributes. In all other cases, we must
dynamically initialize the mutex using pthread_mutex_init().

The mutex argument identifies the mutex to be initialized. The attr argument is a
pointer to a pthread_mutexattr_t object that has previously been initialized to define
the attributes for the mutex. (We say some more about mutex attributes in the next
section.) If attr is specified as NULL, then the mutex is assigned various default
attributes.

Thread A

1. pthread_mutex_lock(mutex1);

2. pthread_mutex_lock(mutex2);
blocks

Thread B

1. pthread_mutex_lock(mutex2);

2. pthread_mutex_lock(mutex1);
blocks

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr);

Returns 0 on success, or a positive error number on error
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SUSv3 specifies that initializing an already initialized mutex results in unde-
fined behavior; we should not do this.

Among the cases where we must use pthread_mutex_init() rather than a static
initializer are the following:

The mutex was dynamically allocated on the heap. For example, suppose that
we create a dynamically allocated linked list of structures, and each structure in
the list includes a pthread_mutex_t field that holds a mutex that is used to protect
access to that structure.

The mutex is an automatic variable allocated on the stack.

We want to initialize a statically allocated mutex with attributes other than the
defaults.

When an automatically or dynamically allocated mutex is no longer required, it
should be destroyed using pthread_mutex_destroy(). (It is not necessary to call
pthread_mutex_destroy() on a mutex that was statically initialized using
PTHREAD_MUTEX_INITIALIZER.)

It is safe to destroy a mutex only when it is unlocked, and no thread will subse-
quently try to lock it. If the mutex resides in a region of dynamically allocated mem-
ory, then it should be destroyed before freeing that memory region. An
automatically allocated mutex should be destroyed before its host function returns.

A mutex that has been destroyed with pthread_mutex_destroy() can subsequently
be reinitialized by pthread_mutex_init().

30.1.6 Mutex Attributes
As noted earlier, the pthread_mutex_init() attr argument can be used to specify a
pthread_mutexattr_t object that defines the attributes of a mutex. Various Pthreads func-
tions can be used to initialize and retrieve the attributes in a pthread_mutexattr_t
object. We won’t go into all of the details of mutex attributes or show the prototypes
of the various functions that can be used to initialize the attributes in a
pthread_mutexattr_t object. However, we’ll describe one of the attributes that can be
set for a mutex: its type.

30.1.7 Mutex Types
In the preceding pages, we made a number of statements about the behavior of
mutexes:

A single thread may not lock the same mutex twice.

A thread may not unlock a mutex that it doesn’t currently own (i.e., that it did
not lock).

A thread may not unlock a mutex that is not currently locked.

#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);

Returns 0 on success, or a positive error number on error
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Precisely what happens in each of these cases depends on the type of the mutex.
SUSv3 defines the following mutex types:

PTHREAD_MUTEX_NORMAL

(Self-)deadlock detection is not provided for this type of mutex. If a thread
tries to lock a mutex that it has already locked, then deadlock results.
Unlocking a mutex that is not locked or that is locked by another thread
produces undefined results. (On Linux, both of these operations succeed
for this mutex type.)

PTHREAD_MUTEX_ERRORCHECK

Error checking is performed on all operations. All three of the above scenarios
cause the relevant Pthreads function to return an error. This type of mutex
is typically slower than a normal mutex, but can be useful as a debugging
tool to discover where an application is violating the rules about how a
mutex should be used.

PTHREAD_MUTEX_RECURSIVE

A recursive mutex maintains the concept of a lock count. When a thread
first acquires the mutex, the lock count is set to 1. Each subsequent lock
operation by the same thread increments the lock count, and each unlock
operation decrements the count. The mutex is released (i.e., made avail-
able for other threads to acquire) only when the lock count falls to 0.
Unlocking an unlocked mutex fails, as does unlocking a mutex that is cur-
rently locked by another thread.

The Linux threading implementation provides nonstandard static initializers for
each of the above mutex types (e.g., PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP), so that
the use of pthread_mutex_init() is not required to initialize these mutex types for
statically allocated mutexes. However, portable applications should avoid the use
of these initializers.

In addition to the above mutex types, SUSv3 defines the PTHREAD_MUTEX_DEFAULT
type, which is the default type of mutex if we use PTHREAD_MUTEX_INITIALIZER or specify
attr as NULL in a call to pthread_mutex_init(). The behavior of this mutex type is delib-
erately undefined in all three of the scenarios described at the start of this section,
which allows maximum flexibility for efficient implementation of mutexes. On
Linux, a PTHREAD_MUTEX_DEFAULT mutex behaves like a PTHREAD_MUTEX_NORMAL mutex.

The code shown in Listing 30-3 demonstrates how to set the type of a mutex, in
this case to create an error-checking mutex.

Listing 30-3: Setting the mutex type

    pthread_mutex_t mtx;
    pthread_mutexattr_t mtxAttr;
    int s, type;

    s = pthread_mutexattr_init(&mtxAttr);
    if (s != 0)
        errExitEN(s, "pthread_mutexattr_init");
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    s = pthread_mutexattr_settype(&mtxAttr, PTHREAD_MUTEX_ERRORCHECK);
    if (s != 0)
        errExitEN(s, "pthread_mutexattr_settype");

    s = pthread_mutex_init(mtx, &mtxAttr);
    if (s != 0)
        errExitEN(s, "pthread_mutex_init");

    s = pthread_mutexattr_destroy(&mtxAttr);        /* No longer needed */
    if (s != 0)
        errExitEN(s, "pthread_mutexattr_destroy");

30.2 Signaling Changes of State: Condition Variables

A mutex prevents multiple threads from accessing a shared variable at the same
time. A condition variable allows one thread to inform other threads about
changes in the state of a shared variable (or other shared resource) and allows the
other threads to wait (block) for such notification.

A simple example that doesn’t use condition variables serves to demonstrate why
they are useful. Suppose that we have a number of threads that produce some “result
units” that are consumed by the main thread, and that we use a mutex-protected
variable, avail, to represent the number of produced units awaiting consumption:

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

static int avail = 0;

The code segments shown in this section can be found in the file threads/
prod_no_condvar.c in the source code distribution for this book.

In the producer threads, we would have code such as the following:

/* Code to produce a unit omitted */

s = pthread_mutex_lock(&mtx);
if (s != 0)
    errExitEN(s, "pthread_mutex_lock");

avail++;    /* Let consumer know another unit is available */

s = pthread_mutex_unlock(&mtx);
if (s != 0)
    errExitEN(s, "pthread_mutex_unlock");

And in the main (consumer) thread, we could employ the following code:

for (;;) {
    s = pthread_mutex_lock(&mtx);
    if (s != 0)
        errExitEN(s, "pthread_mutex_lock");
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    while (avail > 0) {         /* Consume all available units */
        /* Do something with produced unit */
        avail--;
    }

    s = pthread_mutex_unlock(&mtx);
    if (s != 0)
        errExitEN(s, "pthread_mutex_unlock");
}

The above code works, but it wastes CPU time, because the main thread continu-
ally loops, checking the state of the variable avail. A condition variable remedies this
problem. It allows a thread to sleep (wait) until another thread notifies (signals) it
that it must do something (i.e., that some “condition” has arisen that the sleeper
must now respond to).

A condition variable is always used in conjunction with a mutex. The mutex
provides mutual exclusion for accessing the shared variable, while the condition
variable is used to signal changes in the variable’s state. (The use of the term signal
here has nothing to do with the signals described in Chapters 20 to 22; rather, it is
used in the sense of indicate.)

30.2.1 Statically Allocated Condition Variables
As with mutexes, condition variables can be allocated statically or dynamically. We
defer discussion of dynamically allocated condition variables until Section 30.2.5,
and consider statically allocated condition variables here.

A condition variable has the type pthread_cond_t. As with a mutex, a condition
variable must be initialized before use. For a statically allocated condition variable,
this is done by assigning it the value PTHREAD_COND_INITIALIZER, as in the following
example:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

According to SUSv3, applying the operations that we describe in the remain-
der of this section to a copy of a condition variable yields results that are unde-
fined. Operations should always be performed only on the original condition
variable that has been statically initialized using PTHREAD_COND_INITIALIZER or
dynamically initialized using pthread_cond_init() (described in Section 30.2.5).

30.2.2 Signaling and Waiting on Condition Variables
The principal condition variable operations are signal and wait. The signal opera-
tion is a notification to one or more waiting threads that a shared variable’s state
has changed. The wait operation is the means of blocking until such a notification
is received.

The pthread_cond_signal() and pthread_cond_broadcast() functions both signal
the condition variable specified by cond. The pthread_cond_wait() function blocks a
thread until the condition variable cond is signaled.
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The difference between pthread_cond_signal() and pthread_cond_broadcast() lies in
what happens if multiple threads are blocked in pthread_cond_wait(). With
pthread_cond_signal(), we are simply guaranteed that at least one of the blocked
threads is woken up; with pthread_cond_broadcast(), all blocked threads are woken up.

Using pthread_cond_broadcast() always yields correct results (since all threads
should be programmed to handle redundant and spurious wake-ups), but
pthread_cond_signal() can be more efficient. However, pthread_cond_signal() should
be used only if just one of the waiting threads needs to be woken up to handle the
change in state of the shared variable, and it doesn’t matter which one of the wait-
ing threads is woken up. This scenario typically applies when all of the waiting
threads are designed to perform the exactly same task. Given these assumptions,
pthread_cond_signal() can be more efficient than pthread_cond_broadcast(), because it
avoids the following possibility:

1. All waiting threads are awoken.

2. One thread is scheduled first. This thread checks the state of the shared vari-
able(s) (under protection of the associated mutex) and sees that there is work
to be done. The thread performs the required work, changes the state of the
shared variable(s) to indicate that the work has been done, and unlocks the
associated mutex.

3. Each of the remaining threads in turn locks the mutex and tests the state of the
shared variable. However, because of the change made by the first thread,
these threads see that there is no work to be done, and so unlock the mutex
and go back to sleep (i.e., call pthread_cond_wait() once more).

By contrast, pthread_cond_broadcast() handles the case where the waiting threads are
designed to perform different tasks (in which case they probably have different
predicates associated with the condition variable).

A condition variable holds no state information. It is simply a mechanism for
communicating information about the application’s state. If no thread is waiting
on the condition variable at the time that it is signaled, then the signal is lost. A
thread that later waits on the condition variable will unblock only when the variable
is signaled once more.

The pthread_cond_timedwait() function is the same as pthread_cond_wait(),
except that the abstime argument specifies an upper limit on the time that the
thread will sleep while waiting for the condition variable to be signaled.

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

All return 0 on success, or a positive error number on error
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The abstime argument is a timespec structure (Section 23.4.2) specifying an abso-
lute time expressed as seconds and nanoseconds since the Epoch (Section 10.1). If
the time interval specified by abstime expires without the condition variable being
signaled, then pthread_cond_timedwait() returns the error ETIMEDOUT.

Using a condition variable in the producer-consumer example

Let’s revise our previous example to use a condition variable. The declarations of
our global variable and associated mutex and condition variable are as follows:

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

static int avail = 0;

The code segments shown in this section can be found in the file threads/
prod_condvar.c in the source code distribution for this book.

The code in the producer threads is the same as before, except that we add a call to
pthread_cond_signal():

s = pthread_mutex_lock(&mtx);
if (s != 0)
    errExitEN(s, "pthread_mutex_lock");

avail++;                /* Let consumer know another unit is available */

s = pthread_mutex_unlock(&mtx);
if (s != 0)
    errExitEN(s, "pthread_mutex_unlock");

s = pthread_cond_signal(&cond);         /* Wake sleeping consumer */
if (s != 0)
    errExitEN(s, "pthread_cond_signal");

Before considering the code of the consumer, we need to explain
pthread_cond_wait() in greater detail. We noted earlier that a condition variable
always has an associated mutex. Both of these objects are passed as arguments to
pthread_cond_wait(), which performs the following steps:

unlock the mutex specified by mutex;

block the calling thread until another thread signals the condition variable
cond; and

relock mutex.

#include <pthread.h>

int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
                           const struct timespec *abstime);

Returns 0 on success, or a positive error number on error
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The pthread_cond_wait() function is designed to perform these steps because, normally,
we access a shared variable in the following manner:

s = pthread_mutex_lock(&mtx);
if (s != 0)
    errExitEN(s, "pthread_mutex_lock");

while (/* Check that shared variable is not in state we want */)
    pthread_cond_wait(&cond, &mtx);

/* Now shared variable is in desired state; do some work */

s = pthread_mutex_unlock(&mtx);
if (s != 0)
    errExitEN(s, "pthread_mutex_unlock");

(We explain why the pthread_cond_wait() call is placed within a while loop rather
than an if statement in the next section.)

In the above code, both accesses to the shared variable must be mutex-protected
for the reasons that we explained earlier. In other words, there is a natural associa-
tion of a mutex with a condition variable:

1. The thread locks the mutex in preparation for checking the state of the shared
variable.

2. The state of the shared variable is checked.

3. If the shared variable is not in the desired state, then the thread must unlock
the mutex (so that other threads can access the shared variable) before it goes
to sleep on the condition variable.

4. When the thread is reawakened because the condition variable has been sig-
naled, the mutex must once more be locked, since, typically, the thread then
immediately accesses the shared variable.

The pthread_cond_wait() function automatically performs the mutex unlocking and
locking required in the last two of these steps. In the third step, releasing the
mutex and blocking on the condition variable are performed atomically. In other
words, it is not possible for some other thread to acquire the mutex and signal
the condition variable before the thread calling pthread_cond_wait() has blocked
on the condition variable.

There is a corollary to the observation that there is a natural relationship between
a condition variable and a mutex: all threads that concurrently wait on a particular
condition variable must specify the same mutex in their pthread_cond_wait() (or
pthread_cond_timedwait()) calls. In effect, a pthread_cond_wait() call dynamically
binds a condition variable to a unique mutex for the duration of the call.
SUSv3 notes that the result of using more than one mutex for concurrent
pthread_cond_wait() calls on the same condition variable is undefined.
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Putting the above details together, we can now modify the main (consumer) thread
to use pthread_cond_wait(), as follows:

for (;;) {
    s = pthread_mutex_lock(&mtx);
    if (s != 0)
        errExitEN(s, "pthread_mutex_lock");

    while (avail == 0) {            /* Wait for something to consume */
        s = pthread_cond_wait(&cond, &mtx);
        if (s != 0)
            errExitEN(s, "pthread_cond_wait");
    }

    while (avail > 0) {             /* Consume all available units */
        /* Do something with produced unit */
        avail--;
    }

    s = pthread_mutex_unlock(&mtx);
if (s != 0)

    errExitEN(s, "pthread_mutex_unlock");

/* Perhaps do other work here that doesn't require mutex lock */
}

We conclude with one final observation about the use of pthread_cond_signal()
(and pthread_cond_broadcast()). In the producer code shown earlier, we called
pthread_mutex_unlock(), and then called pthread_cond_signal(); that is, we first unlocked
the mutex associated with the shared variable, and then signaled the corresponding
condition variable. We could have reversed these two steps; SUSv3 permits them to
be done in either order.

[Butenhof, 1996] points out that, on some implementations, unlocking the
mutex and then signaling the condition variable may yield better performance
than performing these steps in the reverse sequence. If the mutex is unlocked
only after the condition variable is signaled, the thread performing
pthread_cond_wait() may wake up while the mutex is still locked, and then
immediately go back to sleep again when it finds that the mutex is locked. This
results in two superfluous context switches. Some implementations eliminate
this problem by employing a technique called wait morphing, which moves the
signaled thread from the condition variable wait queue to the mutex wait
queue without performing a context switch if the mutex is locked.

30.2.3 Testing a Condition Variable’s Predicate
Each condition variable has an associated predicate involving one or more shared
variables. For example, in the code segment in the preceding section, the predicate
associated with cond is (avail == 0). This code segment demonstrates a general
design principle: a pthread_cond_wait() call must be governed by a while loop rather
than an if statement. This is so because, on return from pthread_cond_wait(), there
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are no guarantees about the state of the predicate; therefore, we should immedi-
ately recheck the predicate and resume sleeping if it is not in the desired state.

We can’t make any assumptions about the state of the predicate upon return
from pthread_cond_wait(), for the following reasons:

Other threads may be woken up first. Perhaps several threads were waiting to
acquire the mutex associated with the condition variable. Even if the thread
that signaled the mutex set the predicate to the desired state, it is still possible
that another thread might acquire the mutex first and change the state of the
associated shared variable(s), and thus the state of the predicate.

Designing for “loose” predicates may be simpler. Sometimes, it is easier to design
applications based on condition variables that indicate possibility rather than
certainty. In other words, signaling a condition variable would mean “there may
be something” for the signaled thread to do, rather than “there is something” to
do. Using this approach, the condition variable can be signaled based on
approximations of the predicate’s state, and the signaled thread can ascertain
if there really is something to do by rechecking the predicate.

Spurious wake-ups can occur. On some implementations, a thread waiting on a
condition variable may be woken up even though no other thread actually sig-
naled the condition variable. Such spurious wake-ups are a (rare) consequence
of the techniques required for efficient implementation on some multiprocessor
systems, and are explicitly permitted by SUSv3.

30.2.4 Example Program: Joining Any Terminated Thread
We noted earlier that pthread_join() can be used to join with only a specific thread.
It provides no mechanism for joining with any terminated thread. We now show
how a condition variable can be used to circumvent this restriction.

The program in Listing 30-4 creates one thread for each of its command-line
arguments. Each thread sleeps for the number of seconds specified in the corre-
sponding command-line argument and then terminates. The sleep interval is our
means of simulating the idea of a thread that does work for a period of time.

The program maintains a set of global variables recording information about
all of the threads that have been created. For each thread, an element in the global
thread array records the ID of the thread (the tid field) and its current state (the state
field). The state field has one of the following values: TS_ALIVE, meaning the thread is
alive; TS_TERMINATED, meaning the thread has terminated but not yet been joined; or
TS_JOINED, meaning the thread has terminated and been joined.

As each thread terminates, it assigns the value TS_TERMINATED to the state field for
its element in the thread array, increments a global counter of terminated but as yet
unjoined threads (numUnjoined), and signals the condition variable threadDied.

The main thread employs a loop that continuously waits on the condition variable
threadDied. Whenever threadDied is signaled and there are terminated threads that
have not been joined, the main thread scans the thread array, looking for elements
with state set to TS_TERMINATED. For each thread in this state, pthread_join() is called
using the corresponding tid field from the thread array, and then the state is set to
TS_JOINED. The main loop terminates when all of the threads created by the main
thread have died—that is, when the global variable numLive is 0.
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The following shell session log demonstrates the use of the program in
Listing 30-4:

$ ./thread_multijoin 1 1 2 3 3              Create 5 threads
Thread 0 terminating
Thread 1 terminating
Reaped thread 0 (numLive=4)
Reaped thread 1 (numLive=3)
Thread 2 terminating
Reaped thread 2 (numLive=2)
Thread 3 terminating
Thread 4 terminating
Reaped thread 3 (numLive=1)
Reaped thread 4 (numLive=0)

Finally, note that although the threads in the example program are created as join-
able and are immediately reaped on termination using pthread_join(), we don’t
need to use this approach in order to find out about thread termination. We could
have made the threads detached, removed the use of pthread_join(), and simply
used the thread array (and associated global variables) as the means of recording
the termination of each thread.

Listing 30-4: A main thread that can join with any terminated thread

––––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_multijoin.c

#include <pthread.h>
#include "tlpi_hdr.h"

static pthread_cond_t threadDied = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t threadMutex = PTHREAD_MUTEX_INITIALIZER;
                /* Protects all of the following global variables */

static int totThreads = 0;      /* Total number of threads created */
static int numLive = 0;         /* Total number of threads still alive or
                                   terminated but not yet joined */
static int numUnjoined = 0;     /* Number of terminated threads that
                                   have not yet been joined */
enum tstate {                   /* Thread states */
    TS_ALIVE,                   /* Thread is alive */
    TS_TERMINATED,              /* Thread terminated, not yet joined */
    TS_JOINED                   /* Thread terminated, and joined */
};

static struct {                 /* Info about each thread */
    pthread_t tid;              /* ID of this thread */
    enum tstate state;          /* Thread state (TS_* constants above) */
    int sleepTime;              /* Number seconds to live before terminating */
} *thread;

static void *                   /* Start function for thread */
threadFunc(void *arg)
{
    int idx = *((int *) arg);
    int s;
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    sleep(thread[idx].sleepTime);       /* Simulate doing some work */
    printf("Thread %d terminating\n", idx);

    s = pthread_mutex_lock(&threadMutex);
    if (s != 0)
        errExitEN(s, "pthread_mutex_lock");

    numUnjoined++;
    thread[idx].state = TS_TERMINATED;

    s = pthread_mutex_unlock(&threadMutex);
    if (s != 0)
        errExitEN(s, "pthread_mutex_unlock");
    s = pthread_cond_signal(&threadDied);
    if (s != 0)
        errExitEN(s, "pthread_cond_signal");

    return NULL;
}

int
main(int argc, char *argv[])
{
    int s, idx;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s nsecs...\n", argv[0]);

    thread = calloc(argc - 1, sizeof(*thread));
    if (thread == NULL)
        errExit("calloc");

    /* Create all threads */

    for (idx = 0; idx < argc - 1; idx++) {
        thread[idx].sleepTime = getInt(argv[idx + 1], GN_NONNEG, NULL);
        thread[idx].state = TS_ALIVE;
        s = pthread_create(&thread[idx].tid, NULL, threadFunc, &idx);
        if (s != 0)
            errExitEN(s, "pthread_create");
    }

    totThreads = argc - 1;
    numLive = totThreads;

    /* Join with terminated threads */

    while (numLive > 0) {
        s = pthread_mutex_lock(&threadMutex);
        if (s != 0)
            errExitEN(s, "pthread_mutex_lock");
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        while (numUnjoined == 0) {
            s = pthread_cond_wait(&threadDied, &threadMutex);
            if (s != 0)
                errExitEN(s, "pthread_cond_wait");
        }

        for (idx = 0; idx < totThreads; idx++) {
            if (thread[idx].state == TS_TERMINATED){
                s = pthread_join(thread[idx].tid, NULL);
                if (s != 0)
                    errExitEN(s, "pthread_join");

                thread[idx].state = TS_JOINED;
                numLive--;
                numUnjoined--;

                printf("Reaped thread %d (numLive=%d)\n", idx, numLive);
            }
        }

        s = pthread_mutex_unlock(&threadMutex);
        if (s != 0)
            errExitEN(s, "pthread_mutex_unlock");
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_multijoin.c

30.2.5 Dynamically Allocated Condition Variables
The pthread_cond_init() function is used to dynamically initialize a condition vari-
able. The circumstances in which we need to use pthread_cond_init() are analogous
to those where pthread_mutex_init() is needed to dynamically initialize a mutex
(Section 30.1.5); that is, we must use pthread_cond_init() to initialize automatically
and dynamically allocated condition variables, and to initialize a statically allocated
condition variable with attributes other than the defaults.

The cond argument identifies the condition variable to be initialized. As with
mutexes, we can specify an attr argument that has been previously initialized to
determine attributes for the condition variable. Various Pthreads functions can be
used to initialize the attributes in the pthread_condattr_t object pointed to by attr. If
attr is NULL, a default set of attributes is assigned to the condition variable.

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);

Returns 0 on success, or a positive error number on error
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SUSv3 specifies that initializing an already initialized condition variable results
in undefined behavior; we should not do this.

When an automatically or dynamically allocated condition variable is no longer
required, then it should be destroyed using pthread_cond_destroy(). It is not neces-
sary to call pthread_cond_destroy() on a condition variable that was statically initial-
ized using PTHREAD_COND_INITIALIZER.

It is safe to destroy a condition variable only when no threads are waiting on it. If
the condition variable resides in a region of dynamically allocated memory, then it
should be destroyed before freeing that memory region. An automatically allo-
cated condition variable should be destroyed before its host function returns.

A condition variable that has been destroyed with pthread_cond_destroy() can
subsequently be reinitialized by pthread_cond_init().

30.3 Summary

The greater sharing provided by threads comes at a cost. Threaded applications
must employ synchronization primitives such as mutexes and condition variables
in order to coordinate access to shared variables. A mutex provides exclusive access
to a shared variable. A condition variable allows one or more threads to wait for
notification that some other thread has changed the state of a shared variable.

Further information

Refer to the sources of further information listed in Section 29.10.

30.4 Exercises

30-1. Modify the program in Listing 30-1 (thread_incr.c) so that each loop in the thread’s
start function outputs the current value of glob and some identifier that uniquely
identifies the thread. The unique identifier for the thread could be specified as an
argument to the pthread_create() call used to create the thread. For this program,
that would require changing the argument of the thread’s start function to be a
pointer to a structure containing the unique identifier and a loop limit value. Run the
program, redirecting output to a file, and then inspect the file to see what happens to
glob as the kernel scheduler alternates execution between the two threads.

#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t *cond);

Returns 0 on success, or a positive error number on error
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30-2. Implement a set of thread-safe functions that update and search an unbalanced
binary tree. This library should include functions (with the obvious purposes) of
the following form:

initialize(tree);
add(tree, char *key, void *value);
delete(tree, char *key)
Boolean lookup(char *key, void **value)

In the above prototypes, tree is a structure that points to the root of the tree (you
will need to define a suitable structure for this purpose). Each element of the tree
holds a key-value pair. You will also need to define the structure for each element
to include a mutex that protects that element so that only one thread at a time can
access it. The initialize(), add(), and lookup() functions are relatively simple to imple-
ment. The delete() operation requires a little more effort. 

Removing the need to maintain a balanced tree greatly simplifies the locking
requirements of the implementation, but carries the risk that certain patterns
of input would result in a tree that performs poorly. Maintaining a balanced
tree necessitates moving nodes between subtrees during the add() and delete()
operations, which requires much more complex locking strategies.
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