31.1

THREADS: THREAD SAFETY AND
PER-THREAD STORAGE

This chapter extends the discussion of the POSIX threads API, providing a descrip-
tion of thread-safe functions and one-time initialization. We also discuss how to use
thread-specific data or thread-local storage to make an existing function thread-safe
without changing the function’s interface.

Thread Safety (and Reentrancy Revisited)

. For example, the fol-
lowing function (similar to code that we looked at in Section 30.1) is not thread-safe:

static int glob = 0;

static void
incr(int loops)

int loc, j;

onlyice
Highlight

656

for (j = 0; j < loops; j++) {

loc = glob;
loc++;
glob = loc;

}

If multiple threads invoke this function concurrentl
unpredictable.

, the final value in glob is

One way is to
associate a mutex with the function (or perhaps with all of the functions in a
library, if they all share the same global variables), lock that mutex when the func-
tion is called, and unlock it when the mutex returns. This approach has the virtue
of simplicity. On the other hand, it means that only one thread at a time can exe-
cute the function—we say that access to the function is serialized. If the threads
spend a significant amount of time executing this function, then this serialization
results in a loss of concurrency, because the threads of a program can no longer
execute in parallel.

A more sophisticated solution is to associate the mutex with a shared variable.
We then determine which parts of the function are critical sections that access the
shared variable, and acquire and release the mutex only during the execution of
these critical sections. This allows multiple threads to execute the function at the
same time and to operate in parallel, except when more than one thread needs to
execute a critical section.

Non-thread-safe functions

To facilitate the development of threaded applications, all of the functions speci-
fied in SUSv3 are required to be implemented in a thread-safe manner, except
those listed in Table 31-1. (Many of these functions are not discussed in this book.)

In addition to the functions listed in Table 31-1, SUSv3 specifies the following:

e The ctermid() and tmpnam() functions need not be thread-safe if passed a NULL
argument.

e The wertomb() and wesrtombs() functions need not be thread-safe if their final
argument (ps) is NULL.

SUSv4 modifies the list of functions in Table 31-1 as follows:

o The ecvi(), fevl(), gevl(), gethostbyname(), and gethostbyaddr() are removed, since
these functions have been removed from the standard.

e The strsignal() and system() functions are added. The system() function is non-
reentrant because the manipulations that it must make to signal dispositions
have a process-wide effect.

The standards do not prohibit an implementation from making the functions in
Table 31-1 thread-safe. However, even if some of these functions are thread-safe on
some implementations, a portable application can’t rely on this to be the case on all
implementations.

Chapter 31

onlyice
Highlight

onlyice
Highlight
Function 非线程安全的典型场景：使用了各线程共享的全局或者静态变量。

将其改造为线程安全的做法：

* 将整个函数执行过程加锁。这使得函数串行化（serialized）。假如其中某次调用执行时间太久，对并发会造成影响。
* 在函数的临界区加锁。相较第一种方式提升了性能。
* 将其设计成可重入的（reentrant）函数（下面详述）

Table 31-1: Functions that SUSv3 does not require to be thread-safe

asctime() feut() getpwnam() nl_langinfo()
basename() Sftw() getpwuid() ptsname()
catgets() gevt() getservbyname() putc_unlocked()
crypt() getc_unlocked() getservbyport() putchar_unlocked()
ctime() getchar_unlocked() | getservent() puteny()
dbm_clearery() getdate() getutxent() pututxline()
dbm_close() getenv() getutxid() rand()
dbm_delete() getgrent() getutxline() readdir()
dbm_error() getgrgid() gmtime() setenv()
dbm_fetch() getgrnam() hereate() setgrent()
dbm_firstkey() gethostbyaddr() hdestroy() setkey()
dbm_nextkey() gethostbyname() hsearch() setpwent()
dbm_open() gethostent() inet_ntoa() setutxent()
dbm_store() getlogin() 164a() strerror()
dirname() getnetbyaddr() lgammal() strtok()
dlerror() getnetbyname() lgammaf() ttyname()
drand48() getnetent() lgammal() unsetenv()
ecvt() getopt() localeconv() westombs()
encrypt() getprotobyname() localtime() wctomb()
endgrent() getprotobynumber() | lrand48()

endpwent() getprotoent() mrand48()

endutxent() getpwent() nftw()

Reentrant and nonreentrant functions

Although the use of critical sections to implement thread safety is a significant
improvement over the use of per-function mutexes, it is still somewhat inefficient
because there is a cost to locking and unlocking a mutex.

(We first encountered reentrancy when discussing the treatment of global

variables within signal handlers in Section 21.1.2.i However, not all functions can

be made reentrant.

e By their nature, some functions must access global data structures. The func-
tions in the malloc library provide a good example. These functions maintain a
global linked list of free blocks on the heap. The functions of the malloc library
are made thread-safe through the use of mutexes.

e Some functions (defined before the invention of threads) have an interface
that by definition is nonreentrant, because they return pointers to storage statically
allocated by the function, or they employ static storage to maintain informa-
tion between successive calls to the same (or a related) function. Most of the
functions in Table 31-1 fall into this category. For example, the asctime() func-
tion (Section 10.2.3) returns a pointer to a statically allocated buffer containing
a date-time string.

Threads: Thread Safety and Per-Thread Storage 657

onlyice
Highlight
可重入函数实现了线程安全。它不使用全局或静态变量，使得不需要与其他线程共享信息。假如有信息需要给回调用方，它会要求调用方将分配好地址的 buffer 传给它。

比如这两个签名：

```c
char *strerror(int errnum);
int strerror_r(int errnum, char *buf, size_t buflen);
```

其中 `strerror` 是线程不安全的，因为它返回的 char* 会在下次调用 `strerror` 时（比如另外一个线程调用时）被覆盖。但是标准库又提供了 `strerror_r` 这个线程安全的版本，使得调用方可以传入一个 buf 供存放返回的信息。

onlyice
Highlight
一些函数没法做到可重入的原因：

* 有些函数必须访问全局的数据结构，比如 malloc 库的函数需要维护一个全局链表来判断堆上哪些空间可被分配
* 有些函数在线程发明前就有了，它在设计上就不是线程安全的，比如 `asctime()` 会返回一块静态分配的内存。这块内存在后续调用该库函数时会被覆盖写

31.2

For several of the functions that have nonreentrant interfaces, SUSv3 specifies
reentrant equivalents with names ending with the suffix_r. These functions require
the caller to allocate a buffer whose address is then passed to the function and used
to return the result. This allows the calling thread to use a local (stack) variable for
the function result buffer. For this purpose, SUSv3 specifies asctime_r(), ctime_r(),
getgrgid_r(), getgrnam_r(), getlogin_v(), getpwnam_r(), getpwuid_r(), gmtime_r(),
localtime_r(), rand_v(), readdir_r(), strerror_r(), strtok_r(), and ttyname_r().

Some implementations also provide additional reentrant equivalents of other
traditional nonreentrant functions. For example, glibc provides crypt_r(),
gethostbyname_r(), getservbyname_r(), getutent_r(), getutid_r(), getutline_r(), and
ptsname_r(). However, a portable application can’t rely on these functions
being present on other implementations. In some cases, SUSv3 doesn’t specify
these reentrant equivalents because alternatives to the traditional functions
exist that are both superior and reentrant. For example, getaddrinfo() is the
modern, reentrant alternative to gethostbyname() and getservbyname().

One-Time Initialization

For example, a

mutex may need to be initialized with special attributes using pthread_mutex_init(),
and that initialization must occur just once. If we are creating the threads from the
main program, then this is generally easy to achieve—we perform the initialization
before creating any threads that depend on the initialization. However, in a library
function, this is not possible, because the calling program may create the threads
before the first call to the library function. Therefore, the library function needs a
method of performing the initialization the first time that it is called from any thread.

A library function can perform one-time initialization using the pthread_once()
function.

#include <pthread.h>

int pthread_once(pthread once_t *omnce_control, void (*init)(void));

Returns 0 on success, or a positive error number on error

The pthread_once() function uses the state of the argument once_control to ensure

that the caller-defined function pointed to by init is called just once, no matter how

many times or from how many different threads the pthread_once() call is made.
The init function is called without any arguments, and thus has the following form:

void
init(void)

{
}

/* Function body */

658 Chapter 31

onlyice
Highlight
无论创建多少线程，都只执行一次。

31.3

The once_control argument is a pointer to a variable that must be statically initialized
with the value PTHREAD_ONCE_INIT:

pthread_once_t once_var = PTHREAD_ONCE_INIT;

The first call to pthread_once() that specifies a pointer to a particular pthread_once_t
variable modifies the value of the variable pointed to by once_control so that subse-
quent calls to pthread_once() don’t invoke init.

One common use of pthread_once() is in conjunction with thread-specific data,
which we describe next.

The main reason for the existence of pthread_once() is that in early versions of
Pthreads, it was not possible to statically initialize a mutex. Instead, the use of
pthread_mutex_init() was required ([Butenhof, 1996]). Given the later addition
of statically allocated mutexes, it is possible for a library function to perform
one-time initialization using a statically allocated mutex and a static Boolean
variable. Nevertheless, pthread_once() is retained as a convenience.

Thread-Specific Data

The most efficient way of making a function thread-safe is to make it reentrant. All
new library functions should be implemented in this way. However, for an existing
nonreentrant library function (one that was perhaps designed before the use of
threads became common), this approach usually requires changing the function’s
interface, which means modifying all of the programs that use the function.

Thread-specific data is a technique for making an existing function thread-safe
without changing its interface. A function that uses thread-specific data may be
slightly less efficient than a reentrant function, but allows us to leave the programs
that call the function unchanged.

Thread-specific data allows a function to maintain a separate copy of a variable
for each thread that calls the function, as illustrated in Figure 31-1. Thread-specific
data is persistent; each thread’s variable continues to exist between the thread’s
invocations of the function. This allows the function to maintain per-thread infor-
mation between calls to the function, and allows the function to pass distinct result
buffers (if required) to each calling thread.

TSD bufter
Thread A for myfunc()
in thread A

TSD buffer
Thread B for myfunc()
in thread B

TSD bufter
Thread C for myfunc()
in thread C

1]

Figure 31-1: Thread-specific data (TSD) provides perthread storage for a function

Threads: Thread Safety and Per-Thread Storage 659

Thread-Specific Data from the Library Function’s Perspective

In order to understand the use of the thread-specific data API, we need to consider
things from the point of view of a library function that uses thread-specific data:

The function must allocate a separate block of storage for each thread that calls
the function. This block needs to be allocated once, the first time the thread
calls the function.

On each subsequent call from the same thread, the function needs to be able
to obtain the address of the storage block that was allocated the first time this
thread called the function. The function can’t maintain a pointer to the block
in an automatic variable, since automatic variables disappear when the func-
tion returns; nor can it store the pointer in a static variable, since only one
instance of each static variable exists in the process. The Pthreads API provides
functions to handle this task.

Different (i.e., independent) functions may each need thread-specific data.
Each function needs a method of identifying its thread-specific data (a key), as
distinct from the thread-specific data used by other functions.

The function has no direct control over what happens when the thread termi-
nates. When the thread terminates, it is probably executing code outside the
function. Nevertheless, there must be some mechanism (a destructor) to ensure
that the storage block allocated for this thread is automatically deallocated when
the thread terminates. If this is not done, then a memory leak could occur as
threads are continuously created, call the function, and then terminate.

The general steps that a library function performs in order to use thread-specific
data are as follows:

31.3.1
31.3.2
1.
2.
3.
4.
660 Chapter 31

The function creates a key, which is the means of differentiating the thread-specific
data item used by this function from the thread-specific data items used by
other functions. The key is created by calling the pthread_key_create() function.
Creating a key needs to be done only once, when the first thread calls the function.
For this purpose, pthread_once() is employed. Creating a key doesn’t allocate
any blocks of thread-specific data.

The call to pthread_key_create() serves a second purpose: it allows the caller to
specify the address of the programmer-defined destructor function that is used
to deallocate each of the storage blocks allocated for this key (see the next
step). When a thread that has thread-specific data terminates, the Pthreads API
automatically invokes the destructor, passing it a pointer to the data block for
this thread.

The function allocates a thread-specific data block for each thread from which
it is called. This is done using malloc() (or a similar function). This allocation is
done once for each thread, the first time the thread calls the function.

In order to save a pointer to the storage allocated in the previous step, the func-
tion employs two Pthreads functions: pthread_setspecific() and pthread_getspecific().
A call to pthread_setspecific() is a request to the Pthreads implementation to say

onlyice
Highlight

31.3.3

“save this pointer, recording the fact that it is associated with a particular key (the
one for this function) and a particular thread (the calling thread).” Calling
pthread_getspecific() performs the complementary task, returning the pointer pre-
viously associated with a given key for the calling thread. If no pointer was
previously associated with a particular key and thread, then pthread_getspecific()
returns NULL. This is how a function can determine that it is being called for the
first time by this thread, and thus must allocate the storage block for the thread.

Details of the Thread-Specific Data API

In this section, we provide details of each of the functions mentioned in the previ-
ous section, and elucidate the operation of thread-specific data by describing how it
is typically implemented. The next section shows how to use thread-specific data to
write a thread-safe implementation of the standard C library function strerror().

Calling pthread_key_create() creates a new thread-specific data key that is
returned to the caller in the buffer pointed to by key.

#include <pthread.h>

int pthread_key create(pthread_key t *key, void (*destructor)(void *));

Returns 0 on success, or a positive error number on error

Because the returned key is used by all threads in the process, key should point to a
global variable.

The destructor argument points to a programmer-defined function of the fol-
lowing form:

void
dest(void *value)

{

}

Upon termination of a thread that has a non-NULL value _ with key, the
destructor function is automatically invoked by the Pthreads API and given that
value as its argument. The passed value is normally a pointer to this thread’s
thread-specific data block for this key. If a destructor is not required, then destructor
can be specified as NULL.

/* Release storage pointed to by 'value' */

If a thread has multiple thread-specific data blocks, then the order in which the
destructors are called is unspecified. Destructor functions should be designed
to operate independently of one another.

Looking at the implementation of thread-specific data helps us to understand how
it is used. A typical implementation (NPTL is typical), involves the following arrays:

e a single global (i.e., process-wide) array of information about thread-specific
data keys; and

Threads: Thread Safety and Per-Thread Storage 661

onlyice
Highlight
这个 associated 指的是下文描述的 `pthread_setspecific()` 中的 value 参数。

e aset of per-thread arrays, each containing pointers to all of the thread-specific
data blocks allocated for a particular thread (i.e., this array contains the point-
ers stored by calls to pthread_setspecific()).

In this implementation, the pthread_key_t value returned by pthread_key_create() is
simply an index into the global array, which we label pthread_keys, whose form is
shown in Figure 31-2. Each element of this array is a structure containing two
fields. The first field indicates whether this array element is in use (i.e., has been
allocated by a previous call to pthread_key_create()). The second field is used to store
the pointer to the destructor function for the thread-specific data blocks for this
key (i.e., it is a copy of the destructor argument to pthread_key_create()).

pthread_keys[O] “in use” flag

destructor pointer

pthread_keys[1] “in use” flag

destructor pointer

pthread_keys[2] “in use” flag

destructor pointer

Figure 31-2: Implementation of thread-specific data keys

The pthread_setspecific() function requests the Pthreads API to save a copy of value
in a data structure that associates it with the calling thread and with key, a key
returned by a previous call to pthread_key_create(). The pthread_getspecific() function
performs the converse operation, returning the value that was previously associ-
ated with the given key for this thread.

#include <pthread.h>

int pthread_setspecific(pthread key t key, const void *value);
Returns 0 on success, or a positive error number on error
void *pthread_getspecific(pthread_key t key);

Returns pointer, or NULL if no thread-specific data isassociated with key

The value argument given to pthread_setspecific() is normally a pointer to a block of
memory that has previously been allocated by the caller. This pointer will be passed
as the argument for the destructor function for this key when the thread terminates.

The value argument doesn’t need to be a pointer to a block of memory. It
could be some scalar value that can be assigned (with a cast) to void *. In this
case, the earlier call to pthread_key_create() would specify destructor as NULL.

Figure 31-3 shows a typical implementation of the data structure used to store
value. In this diagram, we assume that pthread_keys[1] was allocated to a function

662 Chapter 31

31.34

named myfunc(). For each thread, the Pthreads API maintains an array of pointers
to thread-specific data blocks. The elements of each of these thread-specific arrays
have a one-to-one correspondence with the elements of the global pthread_keys
array shown in Figure 31-2. The pthread_setspecific() function sets the element corre-
sponding to key in the array for the calling thread.

Thread A
isd[0] | pointer TSD buffer
isdf1] | pointer +—| for myfunc()
isd[2] | pointer in thread A
Thread B
isd[0] | pointer
All correspond to M isdf1] ointer —» ;FED buffe(];
pthread_keys[1] for thread B ' P 0 tl? o uch
tsdf2] | pointer 1n threa
Thread C
isd[0] | pointer TSD buffer
isd[1] | pointer +——| for myfunc()
isdf2] | pointer in thread C

Figure 31-3: Data structure used to implement thread-specific data (TSD) pointers

When a thread is first created, all of its thread-specific data pointers are initialized
to NULL. This means that when our library function is called by a thread for the first
time, it must begin by using pthread_getspecific() to check whether the thread already
has an associated value for key. If it does not, then the function allocates a block of
memory and saves a pointer to the block using pthread_setspecific(). We show an
example of this in the thread-safe strerror() implementation presented in the next
section.

Employing the Thread-Specific Data API

When we first described the standard strerror() function in Section 3.4, we noted
that it may return a pointer to a statically allocated string as its function result. This
means that strerror() may not be thread-safe. In the next few pages, we look at a non-
thread-safe implementation of strerror(), and then show how thread-specific data
can be used to make this function thread-safe.

Threads: Thread Safety and Per-Thread Storage 663

On many UNIX implementations, including Linux, the strerror() function
provided by the standard C library is thread-safe. However, we use the example of
strerror() anyway, because SUSv3 doesn’t require this function to be thread-
safe, and its implementation provides a simple example of the use of thread-
specific data.

Listing 31-1 shows a simple non-thread-safe implementation of strerror(). This func-
tion makes use of a pair of global variables defined by glibe: _sys_errlist is an array of
pointers to strings corresponding to the error numbers in errno (thus, for example,
_sys_errlistf EINVAL] points to the string Invalid operation), and _sys_nerr specifies
the number of elements in _sys_errlist.

Listing 31-1: An implementation of sirerror() that is not thread-safe

threads/strerror.c
#define _GNU_SOURCE /* Get '_sys_nerr' and '_sys_errlist’
declarations from <stdio.hy */

#include <stdio.h>

#include <string.h> /* Get declaration of strerror() */
#define MAX_ERROR_LEN 256 /* Maximum length of string
returned by strerror() */
static char buf[MAX_ERROR_LEN]; /* Statically allocated return buffer */
char *
strerror(int err)
{
if (exrr < 0 || err >= _sys nerr || _sys errlist[err] == NULL) {
snprintf(buf, MAX ERROR_LEN, "Unknown error %d", err);
} else {
strncpy(buf, _sys errlist[err], MAX_ERROR_LEN - 1);
buf[MAX_ERROR_LEN - 1] = '\o'; /* Ensure null termination */
}

return buf;

threads/strerror.c

We can use the program in Listing 31-2 to demonstrate the consequences of the
fact that the strerror() implementation in Listing 31-1 is not thread-safe. This pro-
gram calls strerror() from two different threads, but displays the returned value only
after both threads have called strerror(). Even though each thread specifies a differ-
ent value (EINVAL and EPERM) as the argument to strerror(), this is what we see when we
compile and link this program with the version of strerror() shown in Listing 31-1:

$./strerror_test

Main thread has called strerror()

Other thread about to call strerror()

Other thread: str (0x804a7c0) = Operation not permitted
Main thread: str (0x804a7c0) = Operation not permitted

664 Chapter 31

Both threads displayed the errno string corresponding to EPERM, because the call to
strerror() by the second thread (in threadFunc) overwrote the buffer that was written
by the call to strerror() in the main thread. Inspection of the output shows that the
local variable s¢r in the two threads points to the same memory address.

Listing 31-2: Calling strerror() from two different threads

threads/strerror_test.c
#include <stdio.h>

#include <string.h> /* Get declaration of strerror() */

#include <pthread.h>

#include "tlpi_hdr.h"

static void *
threadFunc(void *arg)

{

char *str;

printf("Other thread about to call strerror()\n");
str = strerror(EPERM);
printf("Other thread: str (%p) = %s\n", str, str);

return NULL;
}

int
main(int argc, char *argv[])
{

pthread t t;

int s;

char *str;

str = strerror(EINVAL);
printf("Main thread has called strerror()\n");

s = pthread_create(&t, NULL, threadFunc, NULL);
if (s !=0)
errExitEN(s, "pthread create");
s = pthread_join(t, NULL);
if (s !=0)
errExitEN(s, "pthread join");
printf("Main thread: str (%p) = %s\n", str, str);

exit(EXIT_SUCCESS);

threads/strerror_test.c

Listing 31-3 shows a reimplementation of strerror() that uses thread-specific data to
ensure thread safety.

The first step performed by the revised strerror() is to call pthread_once() ® to
ensure that the first invocation of this function (from any thread) calls createKey() @.
The createKey() function calls pthread_key_create() to allocate a thread-specific data

Threads: Thread Safety and Per-Thread Storage 665

key that is stored in the global variable strerrorKey ®. The call to pthread_key_create()
also records the address of the destructor @ that will be used to free the thread-specific
buffers corresponding to this key.

The strerror() function then calls pthread_getspecific() ® to retrieve the address of
this thread’s unique buffer corresponding to strerrorKey. If pthread._getspecific() returns
NULL, then this thread is calling strerror() for the first time, and so the function allo-
cates a new buffer using malloc() ®, and saves the address of the buffer using
pthread_setspecific() @. If the pthread_getspecific() call returns a non-NULL value, then
that pointer refers to an existing buffer that was allocated when this thread previously
called strerror().

The remainder of this strerror() implementation is similar to the implementa-
tion that we showed earlier, with the difference that bufis the address of a thread-
specific data buffer, rather than a static variable.

Listing 31-3: A thread-safe implementation of strerror() using thread-specific data

threads/strerror_tsd.c
#define _GNU_SOURCE /* Get ' _sys nerr' and ' sys errlist’
declarations from <stdio.h> */
#include <stdio.h>
#include <string.h> /* Get declaration of strerror() */
#include <pthread.h>
#include "tlpi_hdr.h"

static pthread _once_t once = PTHREAD_ONCE_INIT;
static pthread key t strerrorKey;

#define MAX_ERROR_LEN 256 /* Maximum length of string in per-thread
buffer returned by strerror() */

static void /* Free thread-specific data buffer */

® destructor(void *buf)
{
free(buf);
}
static void /* One-time key creation function */

@ createKey(void)
int s;

/* Allocate a unique thread-specific data key and save the address
of the destructor for thread-specific data buffers */

® s = pthread_key create(8strerrorKey, destructor);

if (s 1= 0)
errExitEN(s, "pthread key create");

666 Chapter 31

char *
strerror(int err)

{

int s;
char *buf;

/* Make first caller allocate key for thread-specific data */

s = pthread_once(8once, createKey);
if (s 1= 0)
errExitEN(s, "pthread once");

buf = pthread_getspecific(strerrorkey);
if (buf == NULL) { /* If first call from this thread, allocate
buffer for thread, and save its location */
buf = malloc(MAX_ERROR_LEN);
if (buf == NULL)
errExit("malloc");

s = pthread_setspecific(strerrorkey, buf);
if (s !=0)
errExitEN(s, "pthread_setspecific");

}
if (err < 0 || err >= _sys nerr || _sys errlist[err] == NULL) {
snprintf(buf, MAX_ERROR_LEN, "Unknown error %d", err);
} else {
strncpy(buf, _sys_errlist[err], MAX ERROR_LEN - 1);
buf[MAX_ERROR_LEN - 1] = "\0'; /* Ensure null termination */
}

return buf;

threads/strerror_tsd.c

If we compile and link our test program (Listing 31-2) with the new version of

strerror() (Listing 31-3) to create an executable file, strerror_test_tsd, then we see

the following results when running the program:

$./strerror_test_tsd

Main thread has called strerror()

Other thread about to call strerror()

Other thread: str (0x804b158) = Operation not permitted
Main thread: str (0x804b008) = Invalid argument

From this output, we see that the new version of strerror() is thread-safe. We also see
that the address pointed to by the local variable str in the two threads is different.

Threads: Thread Safety and Per-Thread Storage 667

31.3.5

314

Thread-Specific Data Implementation Limits

As implied by our description of how thread-specific data is typically implemented,
an implementation may need to impose limits on the number of thread-specific
data keys that it supports. SUSv3 requires that an implementation support at least 128
(_POSIX_THREAD_KEYS_MAX) keys. An application can determine how many keys an
implementation actually supports either via the definition of PTHREAD_KEYS_MAX
(defined in <limits.h>) or by calling sysconf(_SC_THREAD_KEYS_MAX). Linux
supports up to 1024 keys.

Even 128 keys should be more than sufficient for most applications. This is
because each library function should employ only a small number of keys—often
just one. If a function requires multiple thread-specific data values, these can usually
be placed in a single structure that has just one associated thread-specific data key.

Thread-Local Storage

Like thread-specific data, thread-local storage provides persistent per-thread stor-
age. This feature is nonstandard, but it is provided in the same or a similar form on
many other UNIX implementations (e.g., Solaris and FreeBSD).

The main advantage of thread-local storage is that it is much simpler to use
than thread-specific data. To create a thread-local variable, we simply include the
__thread specifier in the declaration of a global or static variable:

Each thread has its own copy of the variables declared with this specifier. The vari-
ables in a thread’s thread-local storage persist until the thread terminates, at which
time the storage is automatically deallocated.

Note the following points about the declaration and use of thread-local variables:

e The _ thread keyword must immediately follow the static or extern keyword, if
either of these is specified in the variable’s declaration.

e The declaration of a thread-local variable can include an initializer, in the same
manner as a normal global or static variable declaration.

e The C address (8) operator can be used to obtain the address of a thread-local
variable.

Thread-local storage requires support from the kernel (provided in Linux 2.6), the
Pthreads implementation (provided in NPTL), and the C compiler (provided on
x86-32 with gce 3.3 and later).

Listing 31-4 shows a thread-safe implementation of strerror() using thread-local
storage. If we compile and link our test program (Listing 31-2) with this version of
strerror() to create an executable file, strerror_test_tls, then we see the following
results when running the program:

$./strerror_test_tls

Main thread has called strerror()

Other thread about to call strerror()

Other thread: str (0x40376ab0) = Operation not permitted
Main thread: str (0x40175080) = Invalid argument

668 Chapter 31

onlyice
Highlight

31.5

Listing 31-4: A thread-safe implementation of strerror() using thread-local storage

threads/strerror_tls.c

#define _GNU_SOURCE /* Get '_sys_nerr' and '_sys_errlist’
declarations from <stdio.h> */

#include <stdio.h>

#include <string.h> /* Get declaration of strerror() */

#include <pthread.h>

#define MAX_ERROR_LEN 256 /* Maximum length of string in per-thread
buffer returned by strerror() */

static _ thread char buf[MAX ERROR_LEN];
/* Thread-local return buffer */

char *
strerror(int err)
{
if (err < 0 || err >= _sys nerr || _sys errlist[err] == NULL) {
snprintf(buf, MAX_ERROR_LEN, "Unknown error %d", err);
} else {
strncpy(buf, _sys_errlist[err], MAX ERROR_LEN - 1);
buf[MAX_ERROR_LEN - 1] = "\0'; /* Ensure null termination */
}
return buf;
}
threads/strerror_tls.c
Summary

A function is said to be thread-safe if it can safely be invoked from multiple threads
at the same time. The usual reason a function is not thread-safe is that it makes use
of global or static variables. One way to render a non-thread-safe function safe in a
multithreaded application is to guard all calls to the function with a mutex lock.
This approach suffers the problem that it reduces concurrency, because only one
thread can be in the function at any time. An approach that allows greater concur-
rency is to add mutex locks around just those parts of the function that manipulate
shared variables (the critical sections).

Mutexes can be used to render most functions thread-safe, but they carry a per-
formance penalty because there is a cost to locking and unlocking a mutex. By
avoiding the use of global and static variables, a reentrant function achieves thread-
safety without the use of mutexes.

Most of the functions specified in SUSv3 are required to be thread-safe. SUSv3
also lists a small set of functions that are not required to be thread-safe. Typically,
these are functions that employ static storage to return information to the caller or
to maintain information between successive calls. By definition, such functions are
not reentrant, and mutexes can’t be used to make them thread-safe. We considered
two roughly equivalent coding techniques—thread-specific data and thread-local
storage—that can be used to render an unsafe function thread-safe without needing

Threads: Thread Safety and Per-Thread Storage 669

to change its interface. Both of these techniques allow a function to allocate persis-
tent, per-thread storage.

Further information

Refer to the sources of further information listed in Section 29.10.

31.6 Exercises

31-1. Implement a function, one_time_init(control, init), that performs the equivalent of

pthread_once(). The control argument should be a pointer to a statically allocated
structure containing a Boolean variable and a mutex. The Boolean variable
indicates whether the function init has already been called, and the mutex controls
access to that variable. To keep the implementation simple, you can ignore
possibilities such as ini() failing or being canceled when first called from a thread
(i.e., it is not necessary to devise a scheme whereby, if such an event occurs, the
next thread that calls one_time_init() reattempts the call to init()).

31-2. Use thread-specific data to write thread-safe versions of dirname() and basename()

670

(Section 18.14).

Chapter 31

	31: Threads: Thread Safety and Per-Thread Storage

	31.1 Thread Safety (and Reentrancy Revisited)
	31.2 One-Time Initialization
	31.3 Thread-Specific Data
	31.3.1 Thread-Specific Data from the Library Function’s Perspective
	31.3.2 Overview of the Thread-Specific Data API
	31.3.3 Details of the Thread-Specific Data API
	31.3.4 Employing the Thread-Specific Data API
	31.3.5 Thread-Specific Data Implementation Limits

	31.4 Thread-Local Storage
	31.5 Summary
	31.6 Exercises

